www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vorgehensweise Induktion
Vorgehensweise Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorgehensweise Induktion: wie und waruM?
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 24.10.2006
Autor: Stadtwerk

Hallo,
ich habe mal ne ganz allgemeine Frage. Wir sollen einen Induktionsbeweis einer Summe zeigen [mm] (\sum_{k=1}^{n} k^2=1/6 [/mm] n(n+1)(2n+1). Ok, soviel habe ich mitbekommen: Zuerst der Induktionsanfang. Hier setze ich einfach für n=1. Bei der Induktionsannahme dann einfach nochmal das was ich beweisen soll. Und beim Induktionsschluss schreibe ich [mm] \sum_{k=1}^{n+1} k^2 [/mm]
Aber wie gehts dann weiter? Bin ich eigentlich wirklich so blöd, dass ich das einfach nicht kapier?

        
Bezug
Vorgehensweise Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Di 24.10.2006
Autor: Steffi21

Beim Induktionsschluss gehst Du zu n+1, überall wo n steht wird n+1 eingesetzt, es entsteht also: [mm] \summe_{k=1}^{n+1}k^{2}=\bruch{1}{6}(n+1)*(n+2)*(2n+3) [/mm]
jetzt muss die Gleichheit auf der linken und rechten Seite nachgewiesen werden. Die Summe [mm] \summe_{k=1}^{n+1} k^{2} [/mm]  läßt sich zerlegen in
[mm] \summe_{k=1}^{n} k^{2} [/mm] +  [mm] (n+1)^{2}= \bruch{1}{6}(n+1)*(n+2)*(2n+3) [/mm]

Jetzt für die Summe die Induktionsvoraussetzung einsetzen, durch Auflösen der Klammern und Zusammenfassen die Gleichheit der linken und rechten Seite nachweisen, Viel Spass beim Fertigrechnen

Steffi21




Bezug
                
Bezug
Vorgehensweise Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Di 24.10.2006
Autor: Stadtwerk

dankeschön schon einmal, bin ja schon mal froh das ich auf 1/6 (n+1) (n+2) (2n+3) gekommen bin ;-)
Aber noch mal kurz: Warum kann ich bei der Induktionsvorraussetzung annehmen, dass die Formel stimmt? Ich muss diese doch gerade eben beweisen?! Ich kann doch nicht von etwas ausgehen, von dem ich nicht weiß ob es überhaupt war ist? Irgendwas hängt da bei mir...

Bezug
                        
Bezug
Vorgehensweise Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Di 24.10.2006
Autor: piet.t

Hallo,

>  Aber noch mal kurz: Warum kann ich bei der
> Induktionsvorraussetzung annehmen, dass die Formel stimmt?
> Ich muss diese doch gerade eben beweisen?! Ich kann doch
> nicht von etwas ausgehen, von dem ich nicht weiß ob es
> überhaupt war ist? Irgendwas hängt da bei mir...

Du hast ja im Induktionsanfang nachgewiesen, dass die Inuktionsannahme für n=1 richtig ist. Im Induktionsschluss zeigst Du: wenn die Behauptung für eine natürliche Zahl n gilt (das ist erstmal nur eine Annahme, darum gefällt mir die Bezeichnung Induktionsannahme besser als Induktionsvoraussetzung), dann gilt sie auch für die natürliche Zal n+1.

Damit setzt dann so etwas wie ein Dominoeffekt ein:
Für n=1 gilt die Induktionsannahme (das ist ja gerade der Induktionsanfang), also gilt sie nach Induktionsschluss auch für n=2.
Wenn sie aber für n=2 gilt, dann ja auch für n=3, dann auch für n=4 usw. und nach dem Induktionsaxiom für alle natürlichen Zahlen.

Gruß

piet

Bezug
                                
Bezug
Vorgehensweise Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Di 24.10.2006
Autor: Stadtwerk

dankeschön euch zwei, habt mir schon ein bischen weitergeholfen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]