www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Voraussetzung veranschaulichen
Voraussetzung veranschaulichen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Voraussetzung veranschaulichen: Frage zu Voraussetzung
Status: (Frage) überfällig Status 
Datum: 20:41 Mi 07.02.2018
Autor: Tipsi

Aufgabe
Hallo Community,
beim Beweis des Gaußschen Integralsatzes haben wir folgende Voraussetzung für ein dafür benötigtes Lemma:
Sei Q ein Würfel im n-1-dimensionalen Teilraum L des [mm] \mathbb{R}^n, \alpha\inC^1(Q, [/mm] (a,a+1)), a [mm] \in \mathbb{R}, [/mm] n ein normierter Normalvektor auf L.
Sei A durch [mm] A:=\{x+\lambda n: x \in Q, \lambda \in (a,\alpha(x))\} [/mm] gegeben und f [mm] \in C(\overline{A})\cap C^1(A^0), supp(f)\cap(\{x+an:x \in Q\}\cup \{x+\lambda n: x \in \text{Rand von}Q, \lambda \in (a,a+1)\})=\emptyset [/mm]

Anschließend definieren wir [mm] z_0 [/mm] aus dem Rand einer offenen Menge A als regulären Punkt, wenn es eine Umgebung U von [mm] z_0 [/mm] bzgl. der Relativtopologie auf dem Rand von A gibt, sodass U = [mm] \{z'+\alpha(z')n:z'\in V\} [/mm] mit einer offenen Teilmenge V eines n-1-dimensionalen Teilraumes L= Orthogonalraum von n von [mm] \mathbb R^n [/mm] und einer [mm] C^1-Funktion \; \alpha [/mm] auf V gibt, sodass für eine geeignete Umgebung W von [mm] z_0 [/mm] in [mm] \mathbb{R}^n [/mm] mit einem a [mm] \in \mathbb{R} [/mm] gilt: W [mm] \cap [/mm] A = [mm] \{z \in \mathbb{R}^n = z'+\lambda n: z' \in V, \lambda \in (a, \alpha(z'))\}. [/mm]


Für mich liest sich sowohl die Voraussetzung als auch die Definiiton des regulären Randpunktes extrem kompliziert, darum wäre es toll, wenn ihr mir den Zusammenhang zwischen der Definition des regulären Punktes und der Voraussetzung erklären könntet (denn die Menge der regulären Randpunkte von A besteht offenbar genau aus jenen Randpunkten, für die die Voraussetzung erfüllt ist, aber ich sehe nicht, wieso?). Und falls ihr euch unter der Definition und Voraussetzung etwas anschaulich (evtl. auf einen einfacheren Fall übertragen) vorstellen könnt, wäre ich sehr dankbar, wenn ihr mir mitteilen würdet, wie bzw. wie man die Voraussetzung und Definition sprachlich formuliert ausdrücken kann?

        
Bezug
Voraussetzung veranschaulichen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 11.02.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]