www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - Von Ü-funktion zu Systemmatrix
Von Ü-funktion zu Systemmatrix < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von Ü-funktion zu Systemmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Di 24.01.2012
Autor: Wieselwiesel

Aufgabe
Übertragungsfunktion eines Systems 2. Ordnung
G(s) = [mm] \bruch{2}{s} [/mm] + [mm] \bruch{1}{s+2} [/mm]
Geben sie eine Zustandsraumdarstellung der Form
[mm] \bruch{dx}{dt} [/mm] = Ax + bu , [mm] y=c^{T}x [/mm] an

Hallo,

Ich hab bei dieser Aufgabe Probleme, ich weiss nicht wie man allein von der Übertragungsfunktion auf die Systemmatrix schliessen kann.
Bis jetzt hab ich folgendes versucht:
Die Ü-Fkt besteht aus 2 nicht miteinander gekoppelten Systemen, daher kann man schon mal sagen dass die Systemmatrix [mm] \pmat{ ? & 0 \\ 0 & ? } [/mm] sein müsste. Weiters sind die Pole bekannt [mm] s_{1}=-2 [/mm] und [mm] s_{2}=0 [/mm] und nachdem die Pole auch Eigenwerte sind kann man sie in die Matrix einfügen [mm] \pmat{ 0 & 0 \\ 0 & -2 } [/mm]
das u und das y würden sich dann meiner meinung nach aus den Zählern der Ü-Fkt ergeben, ist es hier egal wie herum man sie wählt? Im Prinzip ja eigentlich schon, oder? Also entweder
[mm] \pmat{ 0 & 0 \\ 0 & -2 }x [/mm] + [mm] \vektor{1 \\ 1}u [/mm] , y = [2  1]
oder
[mm] \pmat{ 0 & 0 \\ 0 & -2 }x [/mm] + [mm] \vektor{2 \\ 1}u [/mm] , y = [1  1]

Stimmt das was ich mir hier zusammengeschustert hab?
Ich hätte auch noch ein Beispiel wo G(s) = [mm] \bruch{1}{s+3} [/mm] ist, wie würde man denn hier vorgehen?

Für Hilfe wär ich sehr dankbar!

        
Bezug
Von Ü-funktion zu Systemmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Di 24.01.2012
Autor: fencheltee


> Übertragungsfunktion eines Systems 2. Ordnung
>  G(s) = [mm]\bruch{2}{s}[/mm] + [mm]\bruch{1}{s+2}[/mm]
>  Geben sie eine Zustandsraumdarstellung der Form
>  [mm]\bruch{dx}{dt}[/mm] = Ax + bu , [mm]y=c^{T}x[/mm] an
>  Hallo,
>  
> Ich hab bei dieser Aufgabe Probleme, ich weiss nicht wie
> man allein von der Übertragungsfunktion auf die
> Systemmatrix schliessen kann.
>  Bis jetzt hab ich folgendes versucht:
>  Die Ü-Fkt besteht aus 2 nicht miteinander gekoppelten
> Systemen, daher kann man schon mal sagen dass die
> Systemmatrix [mm]\pmat{ ? & 0 \\ 0 & ? }[/mm] sein müsste. Weiters
> sind die Pole bekannt [mm]s_{1}=-2[/mm] und [mm]s_{2}=0[/mm] und nachdem die
> Pole auch Eigenwerte sind kann man sie in die Matrix
> einfügen [mm]\pmat{ 0 & 0 \\ 0 & -2 }[/mm]

hallo,
genau

>  das u und das y würden
> sich dann meiner meinung nach aus den Zählern der Ü-Fkt
> ergeben, ist es hier egal wie herum man sie wählt? Im

du meinst eher b und cT

> Prinzip ja eigentlich schon, oder? Also entweder
>  [mm]\pmat{ 0 & 0 \\ 0 & -2 }x[/mm] + [mm]\vektor{1 \\ 1}u[/mm] , y = [2  1]
>  oder
>  [mm]\pmat{ 0 & 0 \\ 0 & -2 }x[/mm] + [mm]\vektor{2 \\ 1}u[/mm] , y = [1  1]
>  
> Stimmt das was ich mir hier zusammengeschustert hab?

es ist richtig, was eine probe ja auch schnell zeigt ;)

>  Ich hätte auch noch ein Beispiel wo G(s) = [mm]\bruch{1}{s+3}[/mm]
> ist, wie würde man denn hier vorgehen?
>  

analog

> Für Hilfe wär ich sehr dankbar!


gruß tee


Bezug
                
Bezug
Von Ü-funktion zu Systemmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Di 24.01.2012
Autor: Wieselwiesel

Danke für die Antwort!

Bei der Ü-Fkt G(s) = [mm] \bruch{1}{s+3} [/mm] war davor ein Blockschaltbild gegegeben aus dem ich die Ü-Fkt hergeleitet hab

u ->.---[G1 [mm] \bruch{s-1}{s+2}]---->[G2 \bruch{1}{s-1}]--.---> [/mm] y
    ^-                             |
    |------------------------------|

Also [mm] \bruch{G1*G2}{1+G1*G2} [/mm]

Wenn ich jetzt die Systemmatrix herleiten will, weiss ich dass ein Eigenwert -3 ist also [mm] \pmat{ 0 & ? \\ ? & -3 } [/mm]
Aber wenn ich nach dem Blockschaltbild gehe, hat G1 einen Einfluss auf G2 also müsste ich ja [mm] \pmat{ 0 & 0 \\ 1 & -3 } [/mm] schreiben, oder? und b und [mm] c^{T} [/mm] ergeben sich wieder aus dem Zähler bzw aus dem Schaltbild, also:

[mm] \pmat{ 0 & 0 \\ 1 & -3 } [/mm] x + [mm] \vektor{0 \\ 1}u [/mm] , y = [0  1]x

Oder? Wenn ichs kurz gegenrechne müsste es stimmen, aber ohne das Blockschlatbild wäre ich zB nicht drauf gekommen dass da noch ein 1er in die Matrix gehört, oder hab ich da irgendwas noch nicht durchschaut?

Bezug
                        
Bezug
Von Ü-funktion zu Systemmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Di 24.01.2012
Autor: fencheltee


> Danke für die Antwort!
>  
> Bei der Ü-Fkt G(s) = [mm]\bruch{1}{s+3}[/mm] war davor ein
> Blockschaltbild gegegeben aus dem ich die Ü-Fkt
> hergeleitet hab
>  
> u ->.---[G1 [mm]\bruch{s-1}{s+2}]---->[G2 \bruch{1}{s-1}]--.--->[/mm]
> y
>      ^-                             |
>      |------------------------------|
>  
> Also [mm]\bruch{G1*G2}{1+G1*G2}[/mm]
>  
> Wenn ich jetzt die Systemmatrix herleiten will, weiss ich
> dass ein Eigenwert -3 ist also [mm]\pmat{ 0 & ? \\ ? & -3 }[/mm]
>  

hallo,
so wie ich das sehe, hast du die aufgabe nicht so ganz erfüllt. du hast die zwei übertragungsblöcke zusammengefasst. damit gibt es quasi nur eine eindimensionale "matrix".
versuche die aufgabe doch noch einmal zu lösen, wenn du sagst: am ausgang legst du [mm] x_1 [/mm] an, und zwischen den beiden blöcken [mm] x_2. [/mm]
physikalisch macht das auch eher sinn, dass man da zwischen 2 strecken oder was auch immer mal eben messen kann

> Aber wenn ich nach dem Blockschaltbild gehe, hat G1 einen
> Einfluss auf G2 also müsste ich ja [mm]\pmat{ 0 & 0 \\ 1 & -3 }[/mm]
> schreiben, oder? und b und [mm]c^{T}[/mm] ergeben sich wieder aus
> dem Zähler bzw aus dem Schaltbild, also:
>  
> [mm]\pmat{ 0 & 0 \\ 1 & -3 }[/mm] x + [mm]\vektor{0 \\ 1}u[/mm] , y = [0  
> 1]x
>  
> Oder? Wenn ichs kurz gegenrechne müsste es stimmen, aber
> ohne das Blockschlatbild wäre ich zB nicht drauf gekommen
> dass da noch ein 1er in die Matrix gehört, oder hab ich da
> irgendwas noch nicht durchschaut?

gruß tee

Bezug
                                
Bezug
Von Ü-funktion zu Systemmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Mi 25.01.2012
Autor: Wieselwiesel

Danke für die Antwort!

Also wenn ich zwischen den beiden Blöcken [mm] x_{2} [/mm] und danach [mm] x_{1} [/mm] anlege dann kann ich folgendes aufstellen:
[mm] x_{2} [/mm] = [mm] G_{1} [/mm] * (u - [mm] x_{1}) [/mm]
und [mm] x_{1} [/mm] = [mm] G_{2} [/mm] * [mm] x_{2} [/mm]
das ergibt dann aber nur wieder die Ü-Fkt.
ich weiss einfach nicht wie ich da was "rauslesen" kann...

Bezug
                                        
Bezug
Von Ü-funktion zu Systemmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Sa 28.01.2012
Autor: qsxqsx

Hallo,

Also ich verstehe nicht was du da überhaupt alles machst...ein zimliches durcheinander. Schau mal unter Frobenis-Form bzw. hier :  []Steuerbarkeit. Es gibt ganz einfache Regeln wie aus der Ü-Funktion die Matrix aufstellen. Natürlich gibt es unendlich viele Möglichkeiten das als Matrix darzustellen, nun gibts aber so standardformen...

Grüsse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]