www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Von KNF in DNF
Von KNF in DNF < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von KNF in DNF: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:03 Di 04.12.2007
Autor: pho3n1x

Aufgabe
Sei [mm] n \ge 1 [/mm] und [mm] \varphi_n := \wedge^n_{i=1} (X_i \gdw Y_i) [/mm]. Zeigen Sie das jede zu [mm] \varphi_n [/mm] äquivalente Formel in DNF mindestens [mm] 2^n [/mm] konjunktive Klauseln hat.

Hinweis: Betrachten Sie eine beliebige Formel [mm] \psi_n [/mm], die äquivalent zu [mm] \varphi_n [/mm] ist und in DNF ist. Zeigen Sie, dass es für jede Konjunktion [mm] (\lambda_1 \wedge ... \wedge \lambda_n) [/mm] mit [mm] var(\lambda_i) = X_i [/mm] mindestens eine konjunktive Klausel von  [mm] \psi_n [/mm] gibt, die [mm] (\lambda_1 \wedge ... \wedge \lambda_n) [/mm] als Subformel enthält.

Wollte das ganze über eine vollständige Induktion über n beweisen. Induktionsanfang usw. sind klar. Nur im Induktionsschritt stecke ich fest, weil ich einfach nicht auf die DNF Formel (für ein beliebiges n) komme.

Also das aller Erste was ich versucht hatte, war erstmal die Biimplikation los zu werden. Dann würde sich folgendes ergeben:
(1) [mm] \wedge^n_{i=1} ((\neg X_i \vee Y_i) \wedge (\neg Y_i \vee X_i)) [/mm] (als KNF)
bzw.
(2) [mm] \wedge^n_{i=1} ((\neg X_i \wedge \neg Y_i) \vee (Y_i \wedge X_i)) [/mm]

Mit der letzte Formel hatte ich mir die resultierenden Formel für verschiedene Werte angeguckt (n=1, n=2, n=3) und diese in eine DNF überführt (für konkrete n-Werte war das für mich auch kein Problem gewesen). Das Problem ist jetzt aber, dass ganze allgemein für [mm] \varphi_n [/mm] zu machen, um anschließend im Induktionschritt von n+1 auf n zu kommen. Ich Komme von (1) oder (2) nicht auf eine äquivalente DNF.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Von KNF in DNF: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:00 Fr 07.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]