www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumenintegrale
Volumenintegrale < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenintegrale: ellipse
Status: (Frage) beantwortet Status 
Datum: 15:05 Di 07.02.2006
Autor: muhkuh

Aufgabe
man zeige: die sllipse hat die fläche [mm] \pi*a*b [/mm]
{(x,y) [mm] \in \IR^{2} [/mm] | [mm] \bruch{x^{2}}{a^{2}}+\bruch{y^{2}}{b^{2}} \le [/mm] 1} mit a,b > 0

Hallo, wir haben grade erst mit volumenintegralen angefangen, deswegen brauch ich etwas hilfe um den ansatz zu finden.
und zwar weiß ich nicht wie ich die Integrationsfläche B finden soll.
auf der y-achse müßte es doch eigentlich nur von -b/2 bis +b/2 gehen? wenn b die kleine, und a die große halbachse ist und die ellipse quer liegt, mit (0|0) als Mittelpunkt. die grenzen der x-achse müssen ja abhängig von a und b sein...wie finde ich die funktion, die die grenze beschreibt?es reicht ja wenn man die fläche des I und IV quadranten nimmt, und diese später verdoppelt.
und welche funktion muss dann anschließend integriert werden? ist es einfach [mm] \bruch{x^{2}}{a^{2}}+\bruch{y^{2}}{b^{2}}? [/mm]
danke schonmal
gruß stefan

        
Bezug
Volumenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Di 07.02.2006
Autor: MatthiasKr

Hallo stefan,

schau dir mal einige threads im bereich integrations- und maßtheorie an, die insbesondere madde_dong und ich in der letzten woche bestritten haben. da sind zum teil sehr ähnliche aufgabenstellungen vorhanden.

grundsätzlich ist es bei solchen aufgaben so, dass man die charakteristische funktion über das gegebene gebiet (hier:ellipse) integrieren muss. Üblicherweise ist das mit dem satz von fubini machbar, dh. man integriert nacheinander die einzelnen achsen.

In deinem Fall mußt du zuerst zB. $x$ von $-a$ bis $a$ laufen lassen (maximaler range!) und dann $y$ entsprechend in abhängigkeit von $x$.

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]