www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Volumenintegral
Volumenintegral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenintegral: Tipp zu einem Beispiel
Status: (Frage) beantwortet Status 
Datum: 14:56 Sa 28.05.2011
Autor: Horst23

Aufgabe
Man berechne das Volumen des von folgenden Flächen begrenzten Körpers
$x + y - z = -3 , [mm] y=x^2, y=\wurzel{x}, [/mm] z=0$
Aus $x + y - z = -3 [mm] \Rightarrow [/mm] z=x+y+3 $

[mm] V=\integral_{0}^{1}{\left( \integral_{x^2}^{\wurzel{x}}{(x+y+3)dy\right)} dx}=...=13/10 [/mm]

Ich verstehe nicht, wie aus der Aufgabenstellung hervorgeht, dass die Integrationsgrenzen für das Integral über x von 0 bis 1 gehen. Für mich fallen diese gerade vom Himmel. Die restliche Rechnung kann ich nachvollziehen...

        
Bezug
Volumenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Sa 28.05.2011
Autor: MathePower

Hallo Horst23,

> Man berechne das Volumen des von folgenden Flächen
> begrenzten Körpers
>  [mm]x + y - z = -3 , y=x^2, y=\wurzel{x}, z=0[/mm]
>  Aus [mm]x + y - z = -3 \Rightarrow z=x+y+3[/mm]
>  
> [mm]V=\integral_{0}^{1}{\left( \integral_{x^2}^{\wurzel{x}}{(x+y+3)dy\right)} dx}=...=13/10[/mm]
>  
> Ich verstehe nicht, wie aus der Aufgabenstellung
> hervorgeht, dass die Integrationsgrenzen für das Integral
> über x von 0 bis 1 gehen. Für mich fallen diese gerade
> vom Himmel. Die restliche Rechnung kann ich
> nachvollziehen...


Die Grenzen für x ergeben sich den beiden Flächen [mm]y=x^{2}[/mm] und [mm]y=\wurzel{x}[/mm]

Laut Aufgabe muss gelten: [mm]x^{2} \le \wurzel{x}[/mm]

Um die Grenzen für x zu bestimmen ,muß
die Gleichung [mm]x^{2}=\wurzel{x}[/mm] gelöst werden.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]