www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Volumen zwischen Paraboloiden
Volumen zwischen Paraboloiden < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen zwischen Paraboloiden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Sa 05.08.2017
Autor: Chilledkroeten

Aufgabe
Gegeben sind 2 Paraboloide:
[mm] a=x^{2}+y^{2} [/mm]
[mm] b=8-(x^{2}+y^{2}) [/mm]
weitere Hinweise für Polarkoordinatenschreibweise:
[mm] x=cos(\alpha) [/mm]
[mm] y=sin(\alpha) [/mm]
dxdy=r [mm] drd\alpha [/mm]

Aufgabe: Es soll per Integration jenes Volumen berechnet werden, welches durch die beiden Paraboloide eingeschlossen wird.
(Dazu ist auch ein Bild zu sehen, auf den man erkennen kann, dass Paraboloid b ein nach unten geöffneter Kelch und Paraboloid ein nach oben geöffneter Kelch ist. Das eingeschlossene Volumen sieht so ähnlich aus wie ein Ei.)

Hallo,
ich habe so ein paar Startschwierigkeiten mit obiger Aufgabe:
Sollte ich zunächst einmal beide Funktionen in Polarkoordinatenschreibweise umwandeln, bevor ich die Schnittlinie ermittle? Wie bestimme ich aber dann meinen Radius bei der Funktion b? Bei Funktion a nehme ich doch einfach nur die Wurzel, da ja [mm] r=\wurzel{x^{2}+y^{2}} [/mm] ist.

Vielen Dank im voraus!

        
Bezug
Volumen zwischen Paraboloiden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:25 So 06.08.2017
Autor: HJKweseleit


> Gegeben sind 2 Paraboloide:
>  [mm]a=x^{2}+y^{2}[/mm]
>  [mm]b=8-(x^{2}+y^{2})[/mm]

Falls a und b Konstanten sind, handelt es sich hier nicht um dreidimensionale Körper, sondern um zwei Kreise in der x-y-Ebene mit den Radien [mm] r_1=\wurzel{a} [/mm] und [mm] r_2 [/mm] = [mm] \wurzel{8-b} [/mm] (falls [mm] b\le [/mm] 8).

>  weitere Hinweise für Polarkoordinatenschreibweise:
>  [mm]x=cos(\alpha)[/mm]
>  [mm]y=sin(\alpha)[/mm]
>  dxdy=r [mm]drd\alpha[/mm]
>  
> Aufgabe: Es soll per Integration jenes Volumen berechnet
> werden, welches durch die beiden Paraboloide eingeschlossen
> wird.
> (Dazu ist auch ein Bild zu sehen, auf den man erkennen
> kann, dass Paraboloid b ein nach unten geöffneter Kelch
> und Paraboloid ein nach oben geöffneter Kelch ist. Das
> eingeschlossene Volumen sieht so ähnlich aus wie ein Ei.)
>  Hallo,
>  ich habe so ein paar Startschwierigkeiten mit obiger
> Aufgabe:
>  Sollte ich zunächst einmal beide Funktionen in
> Polarkoordinatenschreibweise umwandeln, bevor ich die
> Schnittlinie ermittle? Wie bestimme ich aber dann meinen
> Radius bei der Funktion b? Bei Funktion a nehme ich doch
> einfach nur die Wurzel, da ja [mm]r=\wurzel{x^{2}+y^{2}}[/mm] ist.
>
> Vielen Dank im voraus!


Bezug
        
Bezug
Volumen zwischen Paraboloiden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 So 06.08.2017
Autor: Diophant

Hallo,

> Gegeben sind 2 Paraboloide:
> [mm]a=x^{2}+y^{2}[/mm]
> [mm]b=8-(x^{2}+y^{2})[/mm]
> weitere Hinweise für Polarkoordinatenschreibweise:
> [mm]x=cos(\alpha)[/mm]
> [mm]y=sin(\alpha)[/mm]
> dxdy=r [mm]drd\alpha[/mm]

>

> Aufgabe: Es soll per Integration jenes Volumen berechnet
> werden, welches durch die beiden Paraboloide eingeschlossen
> wird.
> (Dazu ist auch ein Bild zu sehen, auf den man erkennen
> kann, dass Paraboloid b ein nach unten geöffneter Kelch
> und Paraboloid ein nach oben geöffneter Kelch ist. Das
> eingeschlossene Volumen sieht so ähnlich aus wie ein Ei.)

Ja, aber dazu benötigt man eigentlich kein Bild. Was du an dem Bild bzw. an der Aufgabe offensichtlich übersehen hast ist die Symmetrie. Die beiden Paraboloid-Stücke berühren sich bei z=4 und sind zur Ebene z=4 symmetrisch. Das kann man sich - unabhängig von der gewählten Integrationsmethode - schoneinmal zunutze machen, indem man das Volumen nur eines der beiden 'Kelche' berechnet und dieses mit 2 multipliziert.

> Hallo,
> ich habe so ein paar Startschwierigkeiten mit obiger
> Aufgabe:
> Sollte ich zunächst einmal beide Funktionen in
> Polarkoordinatenschreibweise umwandeln, bevor ich die
> Schnittlinie ermittle? Wie bestimme ich aber dann meinen
> Radius bei der Funktion b? Bei Funktion a nehme ich doch
> einfach nur die Wurzel, da ja [mm]r=\wurzel{x^{2}+y^{2}}[/mm] ist.

Im dreidimensionalen muss man unterscheiden, welche Art von Polarkoordinaten man verwenden möchte. Ich vermute, das soll auf Zylinderkoordinaten hinauslaufen aber immerhin solltest du dich um so etwas selbst kümmern! Davon abgesehen sind deine Umrechnungsgleichungen für x und y falsch, die für das infinitesimale Flächenelement ist korrekt. Das solltest du jetzt ersteinmal aufarbeiten, bevor wir hier richtig loslegen können.

Prinzipiell sehe ich drei sinnvolle Wege:

a) man rechnet mit einem Doppelintegral in Zylinderkoordinaten und integriert für r von 0 bis 2 und für [mm] \alpha [/mm] von 0 bis [mm] 2\pi. [/mm]

b) möchte man auf Zylinderkoordinaten verzichten, braucht man ein Dreifachintegral (wenn ich nichts übersehe).

c) man integriert die Flächeninhalte von Kreisscheiben entlang der z-Achse, d.h., man fasst die Berandungskurve etwa des unteren Paraboloids als Funktion y=f(x) auf und das Paraboloid als Rotationskörper bei Rotation der Berandungskurve um die y-Achse.

Der letzte Weg c) ist der einfachste, ich kann aber natürlich nicht wissen, ob diese 'Abkürzung' für dich gerade sinnvoll respektive erlaubt ist.

b) wäre nach dem Motto 'warum einfach, wenn es auch umständlich geht' gerechnet und a) habe ich ja bereits skizziert (da ich denke, dass dieser Rechenweg angedacht ist).


Gruß, Diophant

Bezug
        
Bezug
Volumen zwischen Paraboloiden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Mo 07.08.2017
Autor: fred97


> Gegeben sind 2 Paraboloide:
>  [mm]a=x^{2}+y^{2}[/mm]
>  [mm]b=8-(x^{2}+y^{2})[/mm]



Das ist ja eine völlig bescheuerte Schreibweise !

Das erste Paraboloid ist

[mm] P_1=\{(x,y,z) \in \IR^3:z=x^2+y^2 \} [/mm]

und das zweite ist

[mm] P_2=\{(x,y,z) \in \IR^3:z=8-(x^2+y^2) \} [/mm] .



>  weitere Hinweise für Polarkoordinatenschreibweise:
>  [mm]x=cos(\alpha)[/mm]
>  [mm]y=sin(\alpha)[/mm]
>  dxdy=r [mm]drd\alpha[/mm]
>  
> Aufgabe: Es soll per Integration jenes Volumen berechnet
> werden, welches durch die beiden Paraboloide eingeschlossen
> wird.
> (Dazu ist auch ein Bild zu sehen, auf den man erkennen
> kann, dass Paraboloid b ein nach unten geöffneter Kelch
> und Paraboloid ein nach oben geöffneter Kelch ist. Das
> eingeschlossene Volumen sieht so ähnlich aus wie ein Ei.)
>  Hallo,
>  ich habe so ein paar Startschwierigkeiten mit obiger
> Aufgabe:
>  Sollte ich zunächst einmal beide Funktionen in
> Polarkoordinatenschreibweise umwandeln, bevor ich die
> Schnittlinie ermittle? Wie bestimme ich aber dann meinen
> Radius bei der Funktion b? Bei Funktion a nehme ich doch
> einfach nur die Wurzel, da ja [mm]r=\wurzel{x^{2}+y^{2}}[/mm] ist.


Ich würde das nicht mit Polarkoordinaten angehen, sondern mit dem Prinzip von Cavalieri (in meinen Augen ist das das einfachste.

Es ist [mm] P_1 \cap P_2=\{(x,y,4): x^2+y^2=4\}. [/mm]

Die Menge M die von [mm] P_1 [/mm] und [mm] P_2 [/mm] eingeschlossen wird, ist gegeben durch

[mm] M=M_1 \cup M_2, [/mm] wobei

[mm] M_1=\{(x,y,z) \in \IR^3:x^2+y^2 \le z, z \in [0,4] \} [/mm]

und

[mm] M_2=\{(x,y,z) \in \IR^3:x^2+y^2 \le 8-z, z \in [4,8] \} [/mm] .

[mm] \lambda [/mm] bezeichne das Lesgue- Maß im [mm] \IR^3. [/mm] Da [mm] M_1 \cap M_2 [/mm] eine Nullmenge ist, haben wir

[mm] \lambda(M)=\lambda(M_1)+ \lambda(M_2). [/mm]

Mit Cavalieri ist

[mm] $\lambda(M_1)= \int_0^4 \pi [/mm] z dz=8 [mm] \pi$ [/mm] und [mm] $\lambda(M_2)= \int_4^ \pi [/mm] (8-z) dz=8 [mm] \pi$. [/mm]

Fazit : $ [mm] \lambda(M)= [/mm] 16 [mm] \pi$. [/mm]

Das hätte man auch einfacher haben können, denn man "sieht": [mm] \lambda(M_1)= \lambda(M_2). [/mm]



>
> Vielen Dank im voraus!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]