www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Volumen Rotationskörper
Volumen Rotationskörper < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen Rotationskörper: Rotationskörper
Status: (Frage) beantwortet Status 
Datum: 19:48 Di 28.03.2006
Autor: SusaSch

Aufgabe
Hallo Ich habe ein großes Problem mit einer Rotationskörperaufgabe. Unzwar geht es um ein Vase die um die x achse im Bereich 0-25 rotiert mit der gleichung
f(x)= 2,8sin( 0,2*x-0,1)+6,3


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Habs also ins Quadrat genommen

f(x)= 7,48 [mm] sin^2 [/mm] ( 0,2*x-0,1)+ 35,28 sin (0,2*x-0,1)+ 39,69

So nun ist mein Problem die stammfunktion. Und die frage was ist an meiner falsch

7,84* (1/2)* (1/0,2)*( (0,2*x - 0,1)-sin (0,2 *x-0,1) *cos(0,2*x -0,1)) -35,28* ( 1/0,2) *cos (0,2*x -0,1) +39,69*x

Würde mich über verbesserungsvorschläge freuen :)

Gruß Susi

        
Bezug
Volumen Rotationskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Mi 29.03.2006
Autor: Yuma

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Susi,

solche Dezimalzahlen machen mich immer etwas nervös - ich werde deshalb lieber mal mit Variablen rechnen... ;-)

Also du hast $f(x)=a\sin{(bx+c)}+d$ und möchtest $V=\pi\int_{0}^{25}{\left(f(x)\right)^2\ dx}$ bestimmen.
$\left(f(x)\right)^2=a^2\sin^2{(bx+c)}+2ad\sin{(bx+c)}+d^2$

Das Schwierigste ist sicherlich die Stammfunktion von $\sin^2{(bx+c)}$:

Wegen $\sin^2{(x)}=\bruch{1}{2}-\bruch{\cos{(2x)}}{2}$ ist $\int{\sin^2{(x)}\ dx=\bruch{x}{2}-\bruch{\sin{(2x)}}{4}=\bruch{x}{2}-\bruch{\sin{(x)}\cos{(x)}}{2}=\bruch{1}{2}\left(x-\sin{(x)}\cos{(x)}\right)$

und damit $\int{\sin^2{(bx+c)}\ dx=\bruch{1}{2b}\left((bx+c)-\sin{(bx+c)}\cos{(bx+c)}\right)$.

Damit können wir die Stammfunktion von $\left(f(x)\right)^2$ zusammenbasteln:

$\int{\left(f(x)\right)^2\ dx}=\bruch{a^2}{2b}\left((bx+c)-\sin{(bx+c)}\cos{(bx+c)}\right)-\bruch{2ad}{b}\cos{(bx+c)}+d^2x$.

Wenn du das mit deiner Stammfunktion vergleichst, stellst du fest, dass sie absolut richtig ist. [ok]

$7,84\cdot (1/2)* (1/0,2)*( (0,2*x - 0,1)-sin (0,2 *x-0,1) *cos(0,2*x -0,1)) -35,28* ( 1/0,2) *cos (0,2*x -0,1) +39,69*x $

Ich erhalte übrigens ein Volumen von $V=3878,3$ - kommt das hin?

Alles klar? Ansonsten bitte nochmal nachfragen! :-)

MFG,
Yuma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]