www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Volumen Pyramide
Volumen Pyramide < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen Pyramide: Frage
Status: (Frage) beantwortet Status 
Datum: 21:36 Di 17.05.2005
Autor: Sonnen_scheinly

hallöchen...
ich hab mal wieder ein Geschwisterproblem...obwohl ich es als Leistungskursschüler schaffen sollte, vielleicht steht ja der Abistress im Weg.. ???
Jedenfalls geht es darum, dass eine quadratische Pyramide waagerecht geschnitten werden soll, so dass seine gleiche Volumina rauskommen...
die Kantenlänge beträgt 4 cm und die komplette Höhe 8cm. Das gegebene Gesamtvolumen beträgt 42, [mm] 67cm^3. [/mm]

ich selbst hab es erstmal durch 2 geteilt, da aber kein Parameter in der Gleichung übrigbleibt kam ich nicht weiter(Brett vorm Kopf lässt grüßen:-) ). Mein Bruder hat es mit der Höhe versucht: er hat wohl gelernt, dass bei einer Höhe von 4 cm das Volumen 5,3 [mm] cm^3 [/mm] ist, dasselbe für 2: 0,6 [mm] cm^3. [/mm] Dann hat er sich überlegt, wie er auf 21,3 [mm] cm^3 [/mm] kommt. den nächsten Schritt kann ich nich nachvollziehen jedenfalls ist er am Ende auf 1,3 für die Höhe gekommen ?!?!?!

Wäre euch wirklich für eure Hilfe dankbar...

        
Bezug
Volumen Pyramide: Hilfe
Status: (Antwort) fertig Status 
Datum: 22:04 Di 17.05.2005
Autor: Zwerglein

Hi, Juliane,

bissl undurchsichtig die Angaben: Ich vermute, die Pyramide soll durch einen waagrechten Schnitt halbiert werden.
Weiter vermute ich, dass die "Höhe" (1,3), die Dein Bruder berechnet hat, die Höhe des Pyramidenstumpfes sein muss, denn die Höhe des oberen Teils müsste ja größer sein.
Grade dieser "obere" Teil, der ja wieder eine Pyramide ist, ist jedoch der interessantere.
Wie Du an den gegebenen Zahlen (Kantenlänge 4, Höhe 8) erkennst (was sich mit Hilfe des Strahlensatzes auch beweisen ließe), ist die Höhe h auch bei dieser kleineren Pyramide doppelt so groß wie die Kante. Daher gilt:

[mm] V_{kleine Pyr.} [/mm] = [mm] \bruch{1}{3}*h*(\bruch{h}{2})^{2} [/mm] = [mm] \bruch{1}{12}*h^{3}. [/mm]

Dies soll nun genau 21,33 [mm] cm^{3} [/mm] groß sein:

[mm] \bruch{1}{12}*h^{3} [/mm] = 21,33.

Daraus berechnet man h= 6,35.



Bezug
                
Bezug
Volumen Pyramide: Rettung!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Di 17.05.2005
Autor: Sonnen_scheinly

Danke für die schnelle Hilfe trotz der undurchsichtigen Angaben... :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]