www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumen Integral
Volumen Integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen Integral: Integration
Status: (Frage) beantwortet Status 
Datum: 14:06 Di 29.03.2011
Autor: jaood

Aufgabe
Es sei $B$ die nach oben durch $y=x$, nach unten durch $xy=1$ und nach rechts durch $y=2$ eingeschlossene beschränkte Teilmenge des [mm] $\mathbb{R}^2$. [/mm]

Berechnen Sie das Volumen des auf $B$ stehenden Zylinderabschnitts mit der Deckelfläche [mm] $z=y^2/x^2$, [/mm] gegeben durch [mm] $\iint\limits_B [/mm] z dx dy$

Hallo,

bin mir unsicher, ob ich das Integral richtig aufgestellt habe. Also ich schildere mal mein Ansatz: Wir haben eine Fläche, die durch y=2, y=1/x und y=x begrenzt wird.

Dachte mir, dass man die Fläche einmal oben und unten durch 2 und 1 begrenzen kann. Links und rechts wird die Fläche durch die Funktionen x und 1/x begrenzt.

Ist der Ansatz richtig:
[mm] $\iint\limits_B [/mm] z dx dy= [mm] \int_1^2\int_{\frac{1}{x}}^x \frac{y^2}{x^2} [/mm] dydx= [mm] \int_1^2 \left| \frac{y^3}{3x^2} \right|_{\frac{1}{x}}^x [/mm] dx= [mm] \int_1^2 \frac{x^3}{3x^2}-\frac{\frac{1}{x}^3}{3x^2} [/mm] dx= [mm] \int_1^2 \frac{x^6-1}{3x^5} [/mm] dx = [mm] \left| \frac{2x^6+1}{12x^4} \right|_1^2= \frac{2 (2^6)+1}{12(2^4)} [/mm]  - [mm] \frac{2+1}{12}= \frac{129}{192} [/mm]  - [mm] \frac{3}{12}= \frac{27}{64} [/mm] $

Es fehlt die Höhe z oder? Bin ein wenig verwirrt, dass in der Aufgabe nur [mm] \iint [/mm] steht und nicht [mm] \iiint. [/mm]

Ist mein Ansatz richtig oder müsste er viel eher lautet:
[mm] $\int_0^{y^2/x^2}\int_1^2\int_{\frac{1}{x}}^x [/mm] z dydxdz$

Schonmal Danke im voraus!


        
Bezug
Volumen Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Di 29.03.2011
Autor: Al-Chwarizmi


> Es sei [mm]B[/mm] die nach oben durch [mm]y=x[/mm], nach unten durch [mm]xy=1[/mm] und
> nach rechts durch [mm]y=2[/mm] eingeschlossene beschränkte
> Teilmenge des [mm]\mathbb{R}^2[/mm].
>
> Berechnen Sie das Volumen des auf [mm]B[/mm] stehenden
> Zylinderabschnitts mit der Deckelfläche [mm]z=y^2/x^2[/mm], gegeben
> durch [mm]\iint\limits_B z dx dy[/mm]
>  Hallo,
>
> bin mir unsicher, ob ich das Integral richtig aufgestellt
> habe. Also ich schildere mal mein Ansatz: Wir haben eine
> Fläche, die durch y=2, y=1/x und y=x begrenzt wird.
>
> Dachte mir, dass man die Fläche einmal oben und unten
> durch 2 und 1 begrenzen kann. Links und rechts wird die
> Fläche durch die Funktionen x und 1/x begrenzt.
>
> Ist der Ansatz richtig:
> [mm]\iint\limits_B z\ dx\ dy= \int_1^2\int_{\frac{1}{x}}^x \frac{y^2}{x^2} dy\ dx= \int_1^2 \left| \frac{y^3}{3x^2} \right|_{\frac{1}{x}}^x\ dx= \int_1^2 \frac{x^3}{3x^2}-\frac{\frac{1}{x}^3}{3x^2} dx= \int_1^2 \frac{x^6-1}{3x^5} dx = \left| \frac{2x^6+1}{12x^4} \right|_1^2= \frac{2 (2^6)+1}{12(2^4)} - \frac{2+1}{12}= \frac{129}{192} - \frac{3}{12}= \frac{27}{64}[/mm]

Soweit ich sehe, ist das sehr wahrscheinlich die richtige
Lösung. Allerdings müsste es in der Aufgabenstellung
lauten:

"..... nach rechts durch x=2 eingeschlossene ....."
  

> Es fehlt die Höhe z oder? Bin ein wenig verwirrt, dass in
> der Aufgabe nur [mm]\iint[/mm] steht und nicht [mm]\iiint.[/mm]

> Ist mein Ansatz richtig oder müsste er viel eher lauten:
>  [mm]\int_0^{y^2/x^2}\int_1^2\int_{\frac{1}{x}}^x z\ dy\ dx\ dz[/mm]    [notok]

Wenn man das Dreifachintegral nimmt, müsste der
Integrand nicht z sein, sondern 1  !


Hallo jaood,

wir hatten die Aufgabe gerade in einem anderen Thread:
Zylinderabschnitt
Schau auch dort mal nach !

LG    Al-Chw.

Bezug
                
Bezug
Volumen Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 Di 29.03.2011
Autor: jaood

Vielen Dank und sorry, dass ich ein weiteren Thread zu diesem Thema aufgemacht habe, hatte den Beitrag meiner Kommilitonen nicht gesehen/gefunden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]