www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Volumen /Halbkreis
Volumen /Halbkreis < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen /Halbkreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Sa 08.06.2013
Autor: Der-Madde-Freund

Aufgabe
(a)Bestimmen Sie das Volumen unter z = f(x,y) = 5x²y über
dem Halbkreis mit Radius 1, der über der x-Achse liegt.
Hinweis: Verwenden Sie hier kartesische Koordinaten!

(b) Führen Sie die Rechnung aus Teil (a) für z = f(x,y) = 1 durch.

(c) Lösen Sie Teil (a) unter Verwendung von Polarkoordinaten.

Huhu,

ich komme bei dieser Aufgabe mit den Integrationsgrenzen nicht klar...

Ein Kreis hat ja die Darstellung [mm] x^2+y^2=r^2 [/mm] und man soll ja nur den Teil überhalb der x-Achse betrachten. Muss das Integral dann die Grenzen haben:

[mm] \integral_{0}^{1}{\integral_{0}^{r}{\integral_{0}^{\sqrt{r^2-y^2}}{f(x,y) dx} dy} dz} [/mm]


Ist das so korrekt?

        
Bezug
Volumen /Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Sa 08.06.2013
Autor: leduart

Hallo
x geht von -r bis + r, und über z wird doch nicht integriert!
Gruß leduart

Bezug
                
Bezug
Volumen /Halbkreis: Halbkreis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Sa 08.06.2013
Autor: Infinit

Hallo leduart und Madde-Freund,
erst war ich mir über die Flächenlage unklar, aber nach einer kleinen Skizze stimme ich nun leduart zu.
Viele Grüße,
Infinit

Bezug
                        
Bezug
Volumen /Halbkreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Sa 08.06.2013
Autor: Der-Madde-Freund

Hallo, ein Halbkreis mit Radius 1 oberhalb der x-Achse kann doch quasi überall drüber liegen? Er kann doch im Intervall [0,2], [2,4] etc. sein und erfüllt immer die Bedingungen oder täusche ich mich nun?


Also muss das Integral nun [mm] \integral_{0}^{1}{\integral_{-r}^{r}{f(x,y) dx} dy} [/mm] lauten?

Ich dachte immer, dass Volumenintegrale 3-fach-Integrale sein müssen?

Bezug
                                
Bezug
Volumen /Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Sa 08.06.2013
Autor: leduart

Hallo
Jetzt hast du feste Grenzen für x, und y, das ist falsch. Y(x) oder x(y) muss.. Du rechnest ja mit der Höhe z=f(x,y) mal dx mal dy und das ergibt ein Volumen.
Gruß leduart

Bezug
                                        
Bezug
Volumen /Halbkreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Sa 08.06.2013
Autor: Der-Madde-Freund

Hm, ok das mit dem Volumen ist mir dann klar, dafür schon mal danke!!

Die einzige Möglichkeit abhängige Grenzen zu bekommen wäre dann mit r=1:

[mm] y=\sqrt{1-x^2} [/mm] zu nehmen und wenn x zwischen -r und r liegt, würde ich jetzt folgendes denken:

[mm] \integral_{-1}^{1}{\integral_{0}^{\sqrt{1-x^2}}{f(x,y) dy} dx} [/mm] ???

Bezug
                                                
Bezug
Volumen /Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 So 09.06.2013
Autor: fred97


> Hm, ok das mit dem Volumen ist mir dann klar, dafür schon
> mal danke!!
>  
> Die einzige Möglichkeit abhängige Grenzen zu bekommen
> wäre dann mit r=1:
>  
> [mm]y=\sqrt{1-x^2}[/mm] zu nehmen und wenn x zwischen -r und r
> liegt, würde ich jetzt folgendes denken:
>  
> [mm]\integral_{-1}^{1}{\integral_{0}^{\sqrt{1-x^2}}{f(x,y) dy} dx}[/mm]
> ???


Ja, nun rechne.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]