www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Volumen
Volumen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Mi 08.10.2008
Autor: koko

Hallo leute,

ich hab da eine frage an euch, wäre super wenn mir das jemand erklären könnte wie das geht bzw. mir sagen ob das was ich errechnet habe stimmen könnte.

Also folgendes, es soll das Volumen berechnet werden:

[mm] x\ge0, y\ge0, x+y\le1, z\le4-x^2, z\ge2+y^2, [/mm]

[mm] V=\integral_{x}\integral_{y}\integral_{z}dxdydz [/mm]

ich krieg dann raus V= 5/6....kann mir das jemand bestätigen? falls dies nicht möglich sein sollte :-) dann bitte um tipps.

danke im voraus,

mfg

        
Bezug
Volumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 08.10.2008
Autor: XPatrickX

Hallo,

du hättest uns es einfacher gemacht, wenn du deinen Rechenweg mitaufgeschrieben hättest.
Nun ich habe deine Aufgabe mal mit dem PC überprüft und taadaaaa [mm] \frac{5}{6} [/mm] ist richtig. [ok]

Grüße Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]