Volumen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:57 Mo 09.06.2014 | Autor: | manfreda |
Aufgabe | Leiten sie die Formel für das Volumen eines geraden Kreiskegels her mit Hilfe der Integralrechnung. |
Liebes Matheraum-Team,
Ich habe es so probiert indem ich mir vorgestellt habe, dass ich die geraden Formel integriere und diese quadriere und noch mal Pi rechne. Pi [mm] \integral_{a}^{b}{f(x) dx} (mx+q)^2 [/mm] . Jedoch habe ich dann trotzdem nicht die formel 1/3 pi [mm] r^2 [/mm] h
LG
Steffi
|
|
|
|
Hallo,
> Leiten sie die Formel für das Volumen eines geraden
> Kreiskegels her mit Hilfe der Integralrechnung.
> Liebes Matheraum-Team,
>
>
> Ich habe es so probiert indem ich mir vorgestellt habe,
> dass ich die geraden Formel integriere und diese quadriere
Na ja, das ist zunächst mal völlig falsch formuliert. Es geht um eine Geradengleichung und man muss diese zuerst quadrieren und erst danach wird integriert (so hast du es ja auch gedacht, nur eben falsch ausgedrückt).
> und noch mal Pi rechne. Pi [mm]\integral_{a}^{b}{f(x) dx} (mx+q)^2[/mm]
> . Jedoch habe ich dann trotzdem nicht die formel 1/3 pi [mm]r^2[/mm]
> h
>
Ehrlich gesagt ist diese Frage auf einem Niveau formuliert, da kann man nicht zielführend weiterhelfen. Was du wirklich gerechnet hast, bleibt weitestgehend im Dunkeln. Beim Aufschreib hast du dir jetzt auch nicht wirklich Mühe gegeben. Was erwartest du denn von uns?
Einen Tipp möchte ich geben. Du hast oben völlig zusammenhanglos integriert von a bis b, ohne das klar wird, was mit a und b gemeint ist. Man denkt sich ja den Kegel entstehend durch Rotation einer Geraden um die x-Achse. Daher muss man von der Nullstelle dieser Geraden beginnend über die Höhe des Kegels integrieren, sonst wird das nichts.
Mache also folgendes: verwende eine Ursprungsgerade. Deren Steigung bekommst du, indem du Radius und Höhe des Kegels ins Verhältnis setzt. Das Quadrat dieser Geraden integrierst du von 0 bis h, multiplizierst das ganze mit [mm] \pi [/mm] und das war auch dann schon die ganze Rechnung.
Für die Zukunft würde ich dir gerne raten, deine Anliegen hier besser vorbereitet vorzubringen. Das gibt im sonst gerne solche Megathreads mit 50, 60 Beiträgen, bei denen keiner mehr durchblickt und der Fragesteller/die Fragestellerin am Ende genauso schlau ist wie zu Beginn, wie die Erfahrung lehrt!
Gruß, Diophant
|
|
|
|