www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Vollständigkeit
Vollständigkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständigkeit: Cauchy Folge
Status: (Frage) beantwortet Status 
Datum: 08:27 Di 28.04.2009
Autor: clwoe

Aufgabe
Zeigen Sie das der Folgenraum [mm] l_{1}=\{x=(x_{1},x_{2},...):\summe_{i=1}^{\infty}|x_{i}|<\infty\} [/mm] bezüglich der Norm [mm] ||x||_{l_{1}}=\summe_{i=1}^{\infty}|x_{i}| [/mm] vollständig ist.

Hallo,

ich habe damit im Moment ein kleines Problem.

Wenn doch schon von vornherein vorgegeben ist, das die Summe der Folgenglieder absolut konvergiert, dann gilt doch die Cauchy Eigenschaft und damit ist jede dieser Folgen eine Cauchy Folge und konvergiert gegen ein x aus dem [mm] l_{1}. [/mm]

Oder wie soll ich das sonst zeigen. Ich kriege es nicht hin, die formelle Cauchy Eigenschaft auf den Fall hier zu übertragen. Außerdem habe ich ja auch keine Metrik angegeben, in der ich die Cauchy Eigenschaft nachweisen soll sondern nur die zugehörige Norm.
Darf ich deshalb einfach annehmen, das [mm] d(x_{n},x_{m})=||x_{n}-x_{m}||, [/mm] für alle [mm] n,m>N(\varepsilon)? [/mm] Und wie habe ich das [mm] N(\varepsilon) [/mm] überhaupt zu wählen?

Irgendwie kriege ich das nicht so ganz hin.

Gruß,
clwoe


        
Bezug
Vollständigkeit: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Di 28.04.2009
Autor: clwoe

Hallo,

ist diese Frage denn so schwer das niemand hier eine Idee dazu hat?

Ich hab ja auch schon einen Ansatz dazu geschrieben.

Bezug
        
Bezug
Vollständigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Di 28.04.2009
Autor: Leopold_Gast

Deine Elemente sind ja die Folgen [mm]x[/mm] selber. Du mußt jetzt eine Folge dieser Elemente betrachten, also eine Folge von Folgen:

[mm]x^{(1)}, \, x^{(2)}, \, x^{(3)}, \, \ldots[/mm]

Ich habe den Index oben in Klammern angebracht, um keine Konfusion mit dem Koordinatenindex zu erzeugen. Ausgeschrieben heißt das:

[mm]x^{(1)} = \left( x_1^{(1)} , x_2^{(1)} , x_3^{(1)} , \ldots \right)[/mm]
[mm]x^{(2)} = \left( x_1^{(2)} , x_2^{(2)} , x_3^{(2)} , \ldots \right)[/mm]
[mm]x^{(3)} = \left( x_1^{(3)} , x_2^{(3)} , x_3^{(3)} , \ldots \right)[/mm]
[mm]\vdots[/mm]

Von jedem dieser [mm]x^{(k)}[/mm] weißt du nach Definition des Folgenraumes (ich spare mir die Zusatzmarkierung bei der Bezeichnung der Norm):

[mm]\| x^{(k)} \| = \sum_{i=1}^{\infty} | x_i^{(k)} | \ \ \text{konvergiert}[/mm]

Jetzt soll [mm]x^{(1)}, \, x^{(2)}, \, x^{(3)}, \, \ldots[/mm] eine Cauchy-Folge sein. Das bedeutet, daß

[mm]\| x^{(r)} - x^{(s)} \| = \sum_{i=1}^{\infty} | x_i^{(r)} - x_i^{(s)} |[/mm]

beliebig klein wird, wenn nur [mm]r,s[/mm] beliebig groß werden (und das beantwortet auch deine Frage mit ja: [mm]d \left( u , v \right) = \| u - v \|[/mm]).

1. Warum muß dann auch jede Koordinatenfolge [mm]\left( x_i^{(k)} \right)_{k=1,2,3,\ldots}[/mm] (das ist jetzt eine Folge reeller Zahlen) eine gewöhnliche reelle Cauchy-Folge sein?

2. Die Koordinatenfolge muß dann eine Limes besitzen (Vollständigkeitsaxiom von [mm]\mathbb{R}[/mm]): [mm]y_i = \lim_{k \to \infty} x_i^{(k)}[/mm]

3. Weise nach, daß dann [mm]y = \left( y_1, y_2, y_3, \ldots \right)[/mm] der Grenzwert der Folge [mm]\left( x^{(k)} \right)_{k=1,2,3,\ldots}[/mm] ist (jetzt sind wir wieder in der Metrik [mm]d \left( u , v \right) = \left\| u - v \right\|[/mm] des Folgenraumes).

Bezug
                
Bezug
Vollständigkeit: Folgen
Status: (Frage) beantwortet Status 
Datum: 20:09 Di 28.04.2009
Autor: clwoe

Hallo,

danke für die Antwort. Ich glaub ich weiß schon ein wenig was zu tun ist.

Aber warum muss ich nicht zeigen, das jede Folge aus dem Folgenraum eine Cauchy Folge ist oder warum muss ich den Umweg gehen und zeigen, das die Folge aller Folgen eine Cauchy Folge ist???

Das leuchtet mir noch nicht ganz ein!

Gruß,
clwoe


Bezug
                        
Bezug
Vollständigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Di 28.04.2009
Autor: Rino

Hättest du jetzt nicht den Folgenraum als Raum gegeben, sondern z.B. die reellen Zahlen [mm] $\IR$, [/mm] dann betrachtest du da ja auch Folgen von Elementen aus [mm] $\IR$ [/mm] (deinem Raum).
Genauso ist es dann hier. Du betrachtest Folgen von Elementen aus deinem Raum. In diesem Fall sind die Elemente deines Raums selbst wieder Folgen. Daher betrachtest du Folgen von Folgen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]