www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Vollständige Induktion über n
Vollständige Induktion über n < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion über n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Fr 02.12.2005
Autor: Nieke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi!
Ich soll zeigen, dass für alle n [mm] \in \IN [/mm] und x [mm] \in \IR [/mm] mit 1<x gilt: [mm] x^{1/n} \le [/mm] x.

Ich habe versucht, das mit vollständiger Induktion zu lösen. Das sieht bei mir so aus:

Sei n [mm] \in \IN [/mm] und x [mm] \in \IR [/mm] mit 1 < x.

Induktionsverankerung:
n=1.
[mm] x^{1/1} [/mm] =x [mm] \le [/mm] x

Induktionsannahme:
[mm] x^{1/n} \le [/mm] x

Induktionsbehauptung:
[mm] x^{1/n+1} \le [/mm] x

Induktionsschritt:
[mm] x^{1/n+1} \le x^{1/n} \le [/mm] x
weil n+1 [mm] \le [/mm] n ist bzw. [mm] \wurzel[n+1]{x} \le \wurzel[n]{x} [/mm]
Daraus folgt dann, dass [mm] x^{1/n+1} \le [/mm] x

Ich würde mich freuen, wenn mir jemand einen Tipp geben kann, ob das richtig ist. Mir kommt es zu einfach vor, ich kann mir nicht vorstellen, dass die Aufgabe damit schon gelöst ist.

Gruß Nieke


        
Bezug
Vollständige Induktion über n: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Fr 02.12.2005
Autor: Mathe_Alex

Guten Morgen,

Ich würde nicht sagen, dass Du recht hast, denn Du machst bei deiner Induktion die linke Seite der Ungleichung größer, wenn Du die Induktionsvoraussetzung anwendest....meine Lösung kommt mir aber auch komisch vor, aber ich sende sie mal:

I.A. [mm] x^{\bruch{1}{n}} \le [/mm] x

n->n+1

[mm] x^{\bruch{1}{n+1}} \le [/mm] x

<=> [mm] \bruch{x}{x^{n/n+1}} [/mm]
<=> [mm] \bruch{xx^{1/n}}{x^{n+1/n}} [/mm]

Nach IA ist [mm] x^{\bruch{1}{n}} \le [/mm] x , also ersetze ich es im Zähler. Der Bruch wird kleiner auf der linken Seite, die Umformungist also erlaubt.

<=> [mm] x^{2} \le x^{\bruch{2n+1}{n}} [/mm]

Ein paar Worte zu meiner Idee: [mm] \bruch{1}{n+1} [/mm] gefällt mir nicht, also mach ich daraus [mm] \bruch{1+n-n}{n+1}=\bruch{n+1}{n+1}-\bruch{n}{n+1} [/mm] Diesen Trick wende ich zweimal an, um den Exponenten so umzuformen, dass ich die Induktionsvoraussetzung verwenden kann. Außerdem mache ich nach beim Induktionsschritt
[mm] x^{\bruch{1}{n+1}}= x:x^{n/n+1} [/mm] diese Umformung. Danach oben besagten Trick mit +n-n.....hoffe es stimmt. Ansonsten kannst Du ja mal meine Versuche als Anregungn nehmen.

Gruß
Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]