www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: 2 Aufgaben
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:32 So 14.04.2013
Autor: MatheDell

Aufgabe
Beweisen Sie mittels vollständiger Induktion:

1) [mm] \summe_{i=1}^{n}(\bruch{i}{2^i}) [/mm] = 2 - [mm] \bruch{n+2}{2^n} [/mm]

2) [mm] 3*\summe_{i=1}^{n+1}(2i-1)² [/mm] = 4n³+12n²+11n+3

Ich wende für beide Teilaufgaben die vollständige Induktion an, jedoch stimmen bei mir die Gleichungen am Ende nicht überein.

In der ersten Teilaufgabe komme ich auf [mm] 2-\bruch{3n+5}{2^(n+1)} [/mm] und in der zweiten auf 4n³+12n²+11n+6

wobei ich für beide Induktionsanfänge n=1 gewählt habe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 So 14.04.2013
Autor: fred97


> Beweisen Sie mittels vollständiger Induktion:
>  
> 1) [mm]\summe_{i=1}^{n}(\bruch{i}{2^i})[/mm] = 2 - [mm]\bruch{n+2}{2^n}[/mm]
>  
> 2) [mm]3*\summe_{i=1}^{n+1}(2i-1)²[/mm] = 4n³+12n²+11n+3
>  Ich wende für beide Teilaufgaben die vollständige
> Induktion an, jedoch stimmen bei mir die Gleichungen am
> Ende nicht überein.
>  
> In der ersten Teilaufgabe komme ich auf
> [mm]2-\bruch{3n+5}{2^(n+1)}[/mm] und in der zweiten auf
> 4n³+12n²+11n+6
>  
> wobei ich für beide Induktionsanfänge n=1 gewählt habe.


Tja, was soll man dazu sagen ? Wäre ich Hellseher, so würde ich mir Deine Rechnungen ansehen können, die Du ja nicht verraten willst. Ich bin aber kein Hellseher.....

Was machen wir nun ?

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 14.04.2013
Autor: MatheDell

Meine Rechnungen bis jetzt:

1)

I.A. [mm] \summe_{i=1}^{n=1}(\bruch{i}{2^i}) [/mm] = 2 - [mm] \bruch{n+2}{2^n} [/mm] = [mm] \bruch{1}{2¹} [/mm] = [mm] 2-\bruch{1+2}{2}=\bruch{1}{2} [/mm]

I.S. [mm] \summe_{i=1}^{n=1+1}(\bruch{i}{2^i}) [/mm] = [mm] 2-(\bruch{(n+1)+2}{2^(n+1)})=2-(\bruch{n+3}{2^n*2}) [/mm]

[mm] \summe_{i=1}^{n=1+1}(\bruch{i}{2^i}) [/mm] = [mm] \summe_{i=1}^{n=1}(\bruch{i}{2^i}) [/mm] + [mm] \bruch{n+1}{2^(n+1)} [/mm] =(IV) [mm] 2-\bruch{(n+2)}{(2^n)}+\bruch{(n+1)}{2^(n+1)} [/mm] = [mm] 2-\bruch{2(n+2)}{2^(n+1)}+\bruch{(n+1)}{2^(n+1)} [/mm] = [mm] 2-\bruch{3n+5}{2^(n+1)} [/mm]

Bezug
                        
Bezug
Vollständige Induktion: Vorzeichenfehler
Status: (Antwort) fertig Status 
Datum: 16:31 So 14.04.2013
Autor: Loddar

Hallo MatheDell,

[willkommenmr] !!


> I.A. [mm]\summe_{i=1}^{n=1}(\bruch{i}{2^i})[/mm] = 2 - [mm]\bruch{n+2}{2^n}[/mm] = [mm]\bruch{1}{2¹}[/mm] = [mm]2-\bruch{1+2}{2}=\bruch{1}{2}[/mm]

[ok]


> I.S. [mm]\summe_{i=1}^{n=1+1}(\bruch{i}{2^i})[/mm] = [mm]2-(\bruch{(n+1)+2}{2^(n+1)})=2-(\bruch{n+3}{2^n*2})[/mm]

Das ist noch nicht der Induktionsschritt, sondern, was es zu zeigen gilt.

Zudem muss es oberhalb des Summenzeichens $n+1_$ lauten.


> [mm]\summe_{i=1}^{n=1+1}(\bruch{i}{2^i})[/mm] = [mm]\summe_{i=1}^{n=1}(\bruch{i}{2^i})[/mm] + [mm]\bruch{n+1}{2^(n+1)}[/mm] =(IV) [mm]2-\bruch{(n+2)}{(2^n)}+\bruch{(n+1)}{2^(n+1)}[/mm] = [mm]2-\bruch{2(n+2)}{2^(n+1)}+\bruch{(n+1)}{2^(n+1)}[/mm]

Bis hierhin stimmt es mit Ausnahme der Ausdrücke auf den Summenzeichen (siehe oben).


> = [mm]2-\bruch{3n+5}{2^(n+1)}[/mm]

[notok] Hier fasst Du die Brüche falsch zusammen, da Du das Minuszeichen vor dem ersten Bruch ignorierst.


Gruß
Loddar

Bezug
                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 So 14.04.2013
Autor: MatheDell

Habe das Vorzeichen ignoriert, wie dumm.

Kannst du mir noch bei der anderen Aufgabe helfen?

Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 14.04.2013
Autor: MatheDell

Meine Rechnungen zur zweiten Aufgabe:

I.A.
[mm] 3*\summe_{i=1}^{1+1}(2i-1)^2=3*(1+9)=10*3=30=4*1^3+12*1^2+11*1+3=30 [/mm]

I.S.
[mm] 3*\summe_{i=1}^{n+1}(2i-1)^2=4n^3+12n^2+11n+3 \Rightarrow 3*\summe_{i=1}^{(n+1)+1}(2i-1)^2=4(n+1)^3+12(n+1)^2+11(n+1)+3 [/mm]

[mm] 3*(\summe_{i=1}^{n+1}(2i-1)^2+\summe_{i=1}^{1}(2i-1)^2) [/mm]
=(IV) 4n³+12n²+11n+3+3

Bezug
                        
Bezug
Vollständige Induktion: Korrektur
Status: (Antwort) fertig Status 
Datum: 16:49 So 14.04.2013
Autor: Loddar

Hallo MatheDell!


> I.A.
> [mm]3*\summe_{i=1}^{1+1}(2i-1)^2=3*(1+9)=10*3=30=4*1^3+12*1^2+11*1+3=30[/mm]

[ok] Ich selber hätte hier wohl eher mit [mm]n \ = \ 0[/mm] gestartet, aber das ändert nichts.



> I.S.
> [mm]3*\summe_{i=1}^{n+1}(2i-1)^2=4n^3+12n^2+11n+3 \Rightarrow 3*\summe_{i=1}^{(n+1)+1}(2i-1)^2=4(n+1)^3+12(n+1)^2+11(n+1)+3[/mm]

Wie oben bereits geschrieben: das ist noch nicht der Induktionsschritt, sondern die zu zeigende Behauptung.


> [mm]3*(\summe_{i=1}^{n+1}(2i-1)^2+\summe_{i=1}^{1}(2i-1)^2)[/mm] =(IV) 4n³+12n²+11n+3+3

Das hier ist nun nicht mehr ganz nachvollziehbar.

Es gilt:

[mm]3*\summe_{i=1}^{n+2}(2*i-1)^2[/mm]

[mm]= \ \red{3*\summe_{i=1}^{n+1}(2*i-1)^2} \ + \ \blue{3*\summe_{i=n+2}^{n+2}(2*i-1)^2}[/mm]

[mm]= \ \red{4*n^3+12*n^2+11*n+3} \ + \ \blue{3*[2*(n+2)-1]^2}[/mm]

Nun weiter zusammenfassen.


Gruß
Loddar

Bezug
                                
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 So 14.04.2013
Autor: MatheDell

Vielen Dank. Ich denke mein Fehler bestand darin, dass ich [mm] \summe_{i=1}^{n+2} [/mm] in [mm] \summe_{i=1}^{n+1} [/mm] und [mm] \summe_{i=1}^{1} [/mm] anstatt in [mm] \summe_{i=1}^{n+1} [/mm] und [mm] \summe_{i=1}^{n+2} [/mm] aufzuteilen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]