www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 Do 08.12.2011
Autor: per

Aufgabe
Beweisen Sie, dass 21 Teiler von 4 ^ (n+1) + 5 ^ (2n-1) ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo forumsmitglieder,

da morgen mittag abgabe ist und ich die letzte aufgabe einfach nicht hinbekommen will, schreib ich sie hier noch einmal kurz rein. vielleicht findet sich der ein oder andere ja, der sie noch zu später stunde beantworten möchte.

also, wie man oben sieht, geht's um vollständige induktion. die induktionsbasis und der anfang mit n=1 ist ja nicht weiter dramatisch. denn

21 = 4 ^ 2 + 5 ^ 1

der induktionsschritt will mir aber nun nicht einleuchten. egal, auf welchen wegen ich umforme, mir will es einfach nicht gelingen, etwas zu erkennen, was für den beweis aussagekräftig ist.

wie gesagt, vielleicht hat der ein oder andere noch die muße, mir zu helfen. vielen dank schon einmal.

        
Bezug
Vollständige Induktion: erste Schritte
Status: (Antwort) fertig Status 
Datum: 23:40 Do 08.12.2011
Autor: Loddar

Hallo per!


Du musst versuchen auf ein Vielfaches des Ausdruckes [mm]4^{n+1}+5^{2*n-1}[/mm] zu erhalten.

Induktionsschritt mit [mm]n+1_[/mm] :

[mm]4^{n+1+1}+5^{2*(n+1)-1} \ = \ 4^{n+2}+5^{2*n+1} \ = \ 4*4^{n+1}+5^2*5^{2*n-1} \ = \ 4*4^{n+1}+25*5^{2*n-1} \ = \ 4*4^{n+1}+(4+21)*5^{2*n-1} \ = \ 4*4^{n+1}+4*5^{2*n-1}+21*5^{2*n-1} \ = \ ...[/mm]


Gruß
Loddar


Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:05 Fr 09.12.2011
Autor: per

danke für die schnelle hilfe. auf das umstellen auf die faktoren bin ich auch gekommen, nur mir fehlt irgendwie das ziel, auf dass ich hin arbeiten muss. gewissermaßen: was bringt es mir, die faktoren 'freizulegen'?

bisher habe ich versucht, zu argumentieren, dass es eine natürliche zahl a geben muss, für die dann gilt:

a*21 = 4 ^ n+2 + 5 ^ 2n+1

ich weiß nicht, ob es an der fortgeschrittenen stunde liegt und ich deshalb den eigentlich fokus verloren habe. es mag mir jedoch nicht mehr in den sinn kommen. aber dennoch schon einmal für die wirklich schnelle hilfe!

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:25 Fr 09.12.2011
Autor: barsch

Eigentlich hat Loddar dir bereits die Lösung genannt.

Induktionsanfang hast du gezeigt.

Induktionsvoraussetzung (IV): [mm]4^{(n+1)}+5^{(2n-1)}[/mm] ist durch 21 teilbar.

Induktionsschritt: [mm]n\to{n+1}[/mm]

Nehmen wir die Rechnung von Loddar als Ausgangspunkt, dann könnte deine Argumentation so aussehen:

[mm]...=4\cdot{}4^{n+1}+4\cdot{}5^{2\cdot{}n-1}+21\cdot{}5^{2\cdot{}n-1} \ =\underbrace{\underbrace{4*\underbrace{(...)}_{\textrm{nach IV durch 21 teilbar}}}_{\textrm{durch 21 teilbar}}+\underbrace{21*(...)}_{\textrm{durch 21 teilbar}}}_{\textrm{durch 21 teilbar}}[/mm]

Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]