www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Fr 18.03.2011
Autor: mathefreak89

Aufgabe
Man Zeige durch vollständige Induktion:
Für jedes [mm] n\ge0 [/mm] gilt:

[mm] \summe_{k=0}^{n}(p+k)=\bruch{1}{2}(n+1)(2p+n) [/mm]


Hallo erstmal :)

Bei dieser Aufgabe habe ich schon Probleme damit den induktionsanfang mit n=1 zu rechnen weil ich dann auf

p=2p+1 komme.

Hab jetz schon mehrere Aufgaben berechnet allerding immer ohne so eine Variable.

Hab das da dann immer so gemacht ,dass ich die rechte Seite auf die Linke geschrieben habe und zu dem vorhandenen term addiert habe und das k durch n+1 ersetzt habe. Auf der rechten Seite habe ich alle n durch n+1 ersetz und diese dann auf die gleiche Form gebracht.

Würd mich freuen wenn mir jemand erklären könnte wie ich bei der obigen Aufgabe den Induktionsanfang mache und ob mein rechenweg auch für diese Aufgabe gültig ist.

Mfg mathefreak

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Fr 18.03.2011
Autor: schachuzipus

Hallo mathefreak89,

> Man Zeige durch vollständige Induktion:
> Für jedes [mm]n\ge0[/mm] gilt:
>
> [mm]\summe_{k=0}^{n}(p+k)=\bruch{1}{2}(n+1)(2p+n)[/mm]
>
> Hallo erstmal :)
>
> Bei dieser Aufgabe habe ich schon Probleme damit den
> induktionsanfang mit n=1 zu rechnen weil ich dann auf
>
> p=2p+1 komme.

Zum einen beginnt die Induktion bei [mm]n=0[/mm], zum anderen ist

[mm]\sum\limits_{k=0}^1(p+k)=(p+0)+(p+1)=2p+1[/mm]

Und rechterhand [mm]\frac{1}{2}(1+1)(2p+1)=2p+1[/mm]

Passt also ...

>
> Hab jetz schon mehrere Aufgaben berechnet allerding immer
> ohne so eine Variable.
>
> Hab das da dann immer so gemacht ,dass ich die rechte Seite
> auf die Linke geschrieben habe und zu dem vorhandenen term
> addiert habe und das k durch n+1 ersetzt habe. Auf der
> rechten Seite habe ich alle n durch n+1 ersetz und diese
> dann auf die gleiche Form gebracht.
>
> Würd mich freuen wenn mir jemand erklären könnte wie ich
> bei der obigen Aufgabe den Induktionsanfang mache und ob
> mein rechenweg auch für diese Aufgabe gültig ist.

Mache den Induktionsschritt wie üblich, betrachte [mm]p[/mm] als (zwar bel., aber) feste Zahl


IV: Sei [mm]n\in\IN[/mm] mit [mm]\sum\limits_{k=0}^{n}(p+k)=\frac{1}{2}(n+1)(2p+n)[/mm]

Dann ist im Induktionsschritt zu zeigen, dass [mm]\sum\limits_{k=0}^{n+1}(p+k)=\frac{1}{2}(n+2)(2p+n+1)[/mm] ist

Nimm dir die linke Seite her, zerlege die Summe so, dass du die IV anwenden kannst und verrechne es weiter, bis die rechte Seite der zu zeigenden Gleichung dasteht


Anderer Ansatz, der schon bekannte Induktionsbeweise nutzt:

[mm]\sum\limits_{k=0}^n(p+k)=\sum\limits_{k=0}^np \ + \ \sum\limits_{k=0}^nk[/mm]

[mm]=p\cdot{}\sum\limits_{k=0}^n1 \ + \ \sum\limits_{k=0}^nk[/mm]

Linkerhand wird in der Summe [mm](n+1)[/mm]-mal die 1 aufsummiert und mit p multipliziert, da steht also ...

Die andere Summe ist eine altbekannte Summe ...

So kannst du dir die Induktion sparen ;-)

>
> Mfg mathefreak

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]