www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Vollständige Induktion
Vollständige Induktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:17 Sa 12.03.2005
Autor: LieZa

Hallo Leute! Ich hoffe ihr könnt mir bei dieser Aufgabe mal etwas unter die Arme greifen oder mir einen Ansatz geben , wie ich diese Aufgabe lösen könnte!
Aufg.: Beweise durch vollständige Induktion , dass für alle n E N gilt:
                                                                                        
          1+1/2+1/4+ ... + 1 geteilt durch 2 hoch n=2(1- ____1_____ )
                                                                                       2hoch n+1


Induktionsanfang: 2( 1- ____1_____ ) = 1/2
                                        2 hoch 1+1                    

                               w. A.

Induktionsschritt: Annahme: 2( 1- _____1_____ ) w.A.
                                                        2hoch k+1

Bis dahin bin ich schon gekommen. Doch wir haben es im Unterricht nicht weiter besprochen , und mich würde interessieren wie man bei dieser Aufgabe auf ein Ergebnis kommt!
Würde mich freuen , wenn ihr mir dabei helfen könntet!

Gruß , Lieza

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Sa 12.03.2005
Autor: Hanno

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Lisa!

Bitte verwende den Formeleditor, um die Formeln zu schreiben. Es macht allen Helfern das Leben leichter. Ich konnte deine Formeln nicht wirklich entziffern, sondern nur ahnen, dass es sich wohl um den Beweis der Formel für die geometrische Reihe handelt.

Ihr sollt folgendes Beweisen: $1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2^n}=\frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}}=2(1-\frac{1}{2^{n+1}})$ Richtig?

Sei die Behauptung für $n$ korrekt, so willst du sie nun für $n+1$ zeigen:
$1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2^{n+1}}=\left( 1+\frac{1}{2}+...+\frac{1}{2^{n}})+\frac{1}{2^{n+1}}$
Nach Induktionsverankerung entspricht der Term in der Klammer $2\left(1-\frac{1}{2^{n+1}}\right)$, also
$=2\left( 1-\frac{1}{2^{n+1}}\right)+\frac{1}{2^{n+1}}=2-2\cdot\frac{1}{2^{n+1}}+\frac{1}{2^{n+1}}=2-\frac{1}{2^{n+1}}=2-2\frac{1}{2^{n+2}}=2\left( 1-\frac{1}{2^{n+2}}\right)$.

Damit ist die Induktion vollständig.

Wenn dir das Prinzip der vollständigen Induktion gefällt, dann kannst du ja versuchen, die folgenden Aufgabe zu lösen:

1.) Eine Verallgemeinerung der obigen Summenformel (Geometrische Reihe)

$1+a+a^2+a^3+...+a^n=\frac{1-a^{n+1}}{1-a}$.

2.)

$1+2+3+...+n=\frac{n(n+1)}{2}$,
$1^2+2^2+3^2+...+n^2=\frac{n(n+1)(2n+1)}{6}$,
$1^3+2^3+3^3+...+n^3=(1+2+3+...+n)^2=\frac{n^2(n+1)^2}{4}$


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]