www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Vollständige Induktion
Vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 So 18.11.2007
Autor: damien_

Aufgabe
Beispiel 24
Beweisen Sie diese Aussagen mit vollständiger Induktion.
a) [mm] \forall [/mm] n [mm] \in \IN: \summe_{i=1}^{n} 2^{i} [/mm] = [mm] 2^{n + 1} [/mm] - 2
b)
c)

Hallo,

meine frage ist jetzt wie ich eine vollständige Induktion ausführen soll
Ist es möglich dass mir jemand die vollständige Induktion, insbesondere den Ansatz und wie ich die Laufvariable miteinbeziehen soll, an Hand von Beispiel a) erklären kann?

lg

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 So 18.11.2007
Autor: leduart

Hallo
vollst Induktion sagt:
1. zeige dass die Beh für ein Anfangs [mm] n_0 [/mm] (meistens n=1) richtig ist.
2. Nimm an, es gilt für ein [mm] n\ge n_0 [/mm] dann zeige dass es aauch für n+1 gilt.
Idee dabei, mit dem 2. Schritt hast du allgemein gezeigt, wenn s für [mm] n_0 [/mm] gilt, dann auch für [mm] n_0+1 [/mm] dann auch für [mm] n_0+2... [/mm] usw.usw.
Deine Formel

>  Beweisen Sie diese Aussagen mit vollständiger Induktion.
>  a) [mm]\forall[/mm] n [mm]\in \IN: \summe_{i=1}^{n} 2^{i}[/mm] = [mm]2^{n + 1}[/mm] -

1. Schritt n=1 prüfe:
[mm]\summe_{i=1}^{1} 2^{i}[/mm] = [mm]2^{1 + 1}-2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


einsetzen: 2=2^2-2  ist richtig.
Induktionsvorraussetzung:

$\summe_{i=1}^{n} 2^{i} = 2^{n + 1} - 2$
ist richtig.
Daraus zu zeigen

$\summe_{i=1}^{n+1} 2^{i} = 2^{n+1 + 1} - 2$
gilt

Der eigentliche Schritt ist jetzt:

$\summe_{i=1}^{n+1} 2^{i}=\summe_{i=1}^{n} 2^{i}+2^{n+1}$
der erste Teil ist laut Ind.vors 2^{n+1}-2
also setz ich ein:
$\summe_{i=1}^{n} 2^{i}+2^{n+1}=2^{n+1}-2 +2^{n+1}$

jetzt rechte Seite umformen:
=2*2^{n+1}-2=2^{n+2}-2
also die Behauptung.
aus der Indvors folgt die Induktionsbeh.
Jetzt musst du das auf andere Fälle anwenden!
probier mal $\summe_{i=0}^{n} 3^{i} =\bruch{1}{2}*(3^{n+1)-1)
(Vorsicht, die Summe fängt hier bei 0 an, nicht bei 1)
Gruss leduart



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]