www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Vollständige Induktion
Vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Beweis einer Ungleichung
Status: (Frage) beantwortet Status 
Datum: 13:42 So 21.01.2007
Autor: Harrypotter

Aufgabe
Für n [mm] \in \IN [/mm] und für 0 [mm] \le [/mm] a [mm] \le [/mm] 1 gilt:

[mm] (1-a)^n \le \br{1}{1+na} [/mm]
Beweise diese Ungleichung mit Hilfe der vollständigen Induktion.

Hallo! In meinen vorherigen Diskussionen musste ich noch einfache Gleichungen beweisen. Nach leichten Anfangsschwierigkeiten habe ich das auch einigermaßen begriffen.
Nun meine Frage:
Wie mache ich das mit dieser Ungleichung?
Es wäre nett wenn mir da jemand helfen könnte.
Danke

Mit freundlichen Grüßen
Harrypotter

        
Bezug
Vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 So 21.01.2007
Autor: schachuzipus

Hallo Harrypotter

ich nehme an, dass es bei dir im Induktionsschritt hängt.

Also versuchen wir mal den LUMOS ;)

Du hast als Induktionsvoraussetzung [mm] (1-a)^n\le\bruch{1}{1+na} [/mm] für ein beliebiges, aber festes [mm] n\in\IN [/mm]

Dann sollst du  im Induktionsschritt zeigen, dass dann auch [mm] (1-a)^{n+1}\le\bruch{1}{1+(n+1)a} [/mm] gilt

Also: [mm] (1-a)^{n+1}=(1-a)(1-a)^n\le (1-a)\bruch{1}{1+na} [/mm] nach Induktionsvoraussetung

[mm] =\bruch{a-1}{1+na} [/mm] Nun Erweitern mit (1+(n+1)a), denn das soll ja im Nenner auftauchen

[mm] =\bruch{(a-1)(1+(n+1)a)}{(1+na)(1+(n+1)a)} [/mm] Nun Ausmultiplizieren und zusammenfassen

[mm] =\bruch{(1+na)-(n+1)a^2}{(1+na)(1+(n+1)a)} [/mm]

[mm] \le\bruch{1+na}{(1+na)(1+(n+1)a)}, [/mm] denn (n+1) und [mm] a^2\ge [/mm] 0, also [mm] -(n+1)a^2\le [/mm] 0

(Wenn man in einem Bruch den Zähler vergrößert, vergrößert sich der ganze Bruch)

[mm] =\bruch{1}{1+(n+1)a} [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]