www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Vollständige Induktion
Vollständige Induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:18 Do 23.03.2006
Autor: thales

Aufgabe
Sei [mm] a_{0} [/mm] = 0, [mm] a_{1} [/mm] = 1 und [mm] a_{n+1} [/mm] = [mm] a_{n}+a_{n-1} [/mm] für n [mm] \ge [/mm] 1.  Man zeige:  [mm] \summe_{i=1}^{k} a_{i}=a_{k+2} [/mm] - 1

Komme leider nicht weiter.

        
Bezug
Vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:23 Do 23.03.2006
Autor: felixf

Hallo thales!

> Sei [mm]a_{0}[/mm] = 0, [mm]a_{1}[/mm] = 1 und [mm]a_{n+1}[/mm] = [mm]a_{n}+a_{n-1}[/mm] für n
> [mm]\ge[/mm] 1.  Man zeige:  [mm]\summe_{i=1}^{k} a_{i}=a_{k+2}[/mm] - 1
>  Komme leider nicht weiter.

Schreib doch bitte, was du bisher versucht hast und wo du steckengeblieben bist.

LG Felix



Bezug
        
Bezug
Vollständige Induktion: Nachweis ;-)
Status: (Antwort) fertig Status 
Datum: 01:58 Do 23.03.2006
Autor: triangulum

Sei $ [mm] a_{0} [/mm] $ = 0, $ [mm] a_{1} [/mm] $ = 1 und $ [mm] a_{n+1} [/mm] $ = $ [mm] a_{n}+a_{n-1} [/mm] $ für n $ [mm] \ge [/mm] $ 1.  Man zeige:  $ [mm] \summe_{i=1}^{k} a_{i}=a_{k+2} [/mm] $ - 1

Es ist doch

Induktionsanker: Nachweis, dass $ [mm] \summe_{i=1}^{k} a_{i}=a_{k+2} [/mm] $ - 1
für k = 1 gilt :

$ [mm] \summe_{i=1}^{1} a_{i}=a_{1+2} [/mm] $ - 1 = [mm] a_{3} [/mm] - 1 = [mm] a_{2} [/mm] + [mm] a_{1} [/mm] - 1 = [mm] a_{1} [/mm] + [mm] a_{0} [/mm] + [mm] a_{1} [/mm] - 1 = 1 + 0 + 1 - 1 = 1 = [mm] a_{1} [/mm] ==> korrekt.

Induktionsschritt: Nachweis, dass $ [mm] \summe_{i=1}^{k+1} a_{i}=a_{k+1+2} [/mm] $ - 1 gilt, wenn vorausgesetzt wird, dass $ [mm] \summe_{i=1}^{k} a_{i}=a_{k+2} [/mm] $ - 1 bereits gilt :

   [mm] \summe_{i=1}^{k+1} a_{i} [/mm]
= [mm] \summe_{i=1}^{k} a_{i} [/mm] + [mm] a_{k+1} [/mm]    Summendefinition
= [mm] a_{k+2} [/mm] - 1 + [mm] a_{k+1} [/mm]    Benutzung der Voraussetzung des Induktionsschritts!
= [mm] a_{k+3} [/mm] - 1    Anwendung Definition der Folgenglieder
= [mm] a_{k+1+2} [/mm] - 1 q.e.d. ==> korrekt

Du hast jetzt Induktionsanker und Induktionsschritt korrekt hergelitten (bewiesen). Damit ist der Induktionsbeweis fertig ;-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]