Vollständige Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:18 Mi 01.02.2006 | Autor: | oeli1985 |
Aufgabe | Beweise folgende Aussagen mittels vollständiger Induktion:
a) [mm] $\summe_{k=1}^{n} \bruch{1}{n+k} [/mm] = [mm] \summe_{k=1}^{2n} (-1)^{k+1} \bruch{1}{k}$
[/mm]
b) [mm] $\summe_{k=1}^{n-1} [/mm] k(n-k) = [mm] \bruch{ n^{3}-n}{6}$ [/mm] |
Hallo zusammen,
ich bereite mich gerade auf meine erste Analysis Klausur vor und bin gerade dabei das Beweisprinzip der vollständigen Induktion zu üben. Dabei habe ich bei 2 Aussagen ein wenig Probleme bekommen. Ich hoffe ihr könnt mir da weiterhelfen.
Also:
[u] zu a) [u]
I.A. (n=1):
[mm] \summe_{k=1}^{1} \bruch{1}{n+k} [/mm] = 0,5 = [mm] \summe_{k=1}^{2} (-1)^{k+1} \bruch{1}{k}
[/mm]
I.S. (n [mm] \mapsto [/mm] n+1):
[mm] \summe_{k=1}^{2(n+1)} (-1)^{k+1} \bruch{1}{k} [/mm] = ( [mm] \summe_{k=1}^{2n} (-1)^{k+1} \bruch{1}{k}) [/mm] + [mm] (-1)^{2n+2} \bruch{1}{2n+1} [/mm] + [mm] (-1)^{2n+3} \bruch{1}{2n+2} [/mm] = ... nach I.V. ... = ( [mm] \summe_{k=1}^{n} \bruch{1}{n+k}) [/mm] + [mm] \bruch{1}{2n+1} [/mm] - [mm] \bruch{1}{2n+2} [/mm] = ( [mm] \summe_{k=1}^{n+1} \bruch{1}{n+k}) [/mm] - [mm] \bruch{1}{2n+2}
[/mm]
So ab hier weiss ich nicht mehr weiter. Ich müsste doch letztendlich auf folgenden Ausdruck kommen, oder?
[mm] \summe_{k=1}^{2(n+1)} (-1)^{k+1} \bruch{1}{k} [/mm] = [mm] \summe_{k=1}^{n+1} \bruch{1}{n+1+k}
[/mm]
Bin mir nicht mehr ganz sicher, ob man die "n" in der Summe auch verändert, wenn man den Index verschiebt oder, wie hier, im Induktionsschritt die Ausdrücke anpassen muss!?
[u] zu b) [u]
I.A. (n=2):
[mm] \summe_{k=1}^{1} [/mm] k(2-k) = 1 = [mm] \bruch{ 2^{3}-2}{6}
[/mm]
I.S. (n [mm] \mapsto [/mm] n+1):
[mm] \summe_{k=1}^{n} [/mm] k(n+1-k) = ( [mm] \summe_{k=1}^{n-1} [/mm] kn+k+ [mm] k^{2}) [/mm] + n(n+1-n) = ( [mm] \summe_{k=1}^{n-1} [/mm] k(n-k)+k) + n = ( [mm] \summe_{k=1}^{n-1} [/mm] k(n-k)) + ( [mm] \summe_{k=1}^{n-1} [/mm] k) + n = ... nach I.V. ... = [mm] \bruch{ n^{3}-n}{6} [/mm] + [mm] \summe_{k=1}^{n} [/mm] k
Von hier an habe ich ein wenig hin und her umgeformt, bin aber meiner Meinung nach auf nichts Hilfreiches gestoßen. Auch hier weiss ich nicht genau, ob es überhaupt richtig war im Ausdruck der 1.Summe das n "anzupassen"!?
Insgesamt schon einmal danke für eure Hilfe.
Gruß, Patrick
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:27 Mi 01.02.2006 | Autor: | leduart |
Hallo Patrick
Erstens: Bitte sieh dir vor dem Absenden den post in der Vorschau an, wenn du Formeln drin hast. Ich musste ne ganze Weile editieren, damit das lesbar war!
> Beweise folgende Aussagen mittels vollständiger Induktion:
>
> a) [mm]\summe_{k=1}^{n} \bruch{1}{n+k} = \summe_{k=1}^{2n} (-1)^{k+1} \bruch{1}{k}[/mm]
>
> b) [mm]\summe_{k=1}^{n-1} k(n-k) = \bruch{ n^{3}-n}{6}[/mm]
> Hallo
> zusammen,
>
> ich bereite mich gerade auf meine erste Analysis Klausur
> vor und bin gerade dabei das Beweisprinzip der
> vollständigen Induktion zu üben. Dabei habe ich bei 2
> Aussagen ein wenig Probleme bekommen. Ich hoffe ihr könnt
> mir da weiterhelfen.
>
> Also:
>
> zu a)
> I.A. (n=1):
> [mm]\summe_{k=1}^{1} \bruch{1}{n+k}[/mm] = 0,5 = [mm]\summe_{k=1}^{2} (-1)^{k+1} \bruch{1}{k}[/mm]
>
> I.S. (n [mm]\mapsto[/mm] n+1):
>
Hier solltest du jetzt erstmal die Behauptung ausgeschrieben aufschreiben.
Die Vors richtig für n steht ja schon oben:
Vors: [mm]\summe_{k=1}^{n} \bruch{1}{n+k} = \summe_{k=1}^{2n} (-1)^{k+1} \bruch{1}{k}[/mm]
Beh: [mm]\summe_{k=1}^{n+1} \bruch{1}{n+1+k} = \summe_{k=1}^{2(n+1)} (-1)^{k+1} \bruch{1}{k}[/mm]
ÜBERALL n durch n+1 ersetzt!
> [mm]\summe_{k=1}^{2(n+1)} (-1)^{k+1} \bruch{1}{k}[/mm] = (
> [mm]\summe_{k=1}^{2n} (-1)^{k+1} \bruch{1}{k})[/mm] + [mm](-1)^{2n+2} \bruch{1}{2n+1}[/mm]
> + [mm](-1)^{2n+3} \bruch{1}{2n+2}[/mm] = ... nach I.V. ... = (
> [mm]\summe_{k=1}^{n} \bruch{1}{n+k})[/mm] + [mm]\bruch{1}{2n+1}[/mm] -
> [mm]\bruch{1}{2n+2}[/mm] = ( [mm]\summe_{k=1}^{n+1} \bruch{1}{n+k})[/mm] -
> [mm]\bruch{1}{2n+2}[/mm]
>
> So ab hier weiss ich nicht mehr weiter. Ich müsste doch
> letztendlich auf folgenden Ausdruck kommen, oder?
>
> [mm]\summe_{k=1}^{2(n+1)} (-1)^{k+1} \bruch{1}{k}[/mm] =
> [mm]\summe_{k=1}^{n+1} \bruch{1}{n+1+k}[/mm]
>
> Bin mir nicht mehr ganz sicher, ob man die "n" in der Summe
> auch verändert, wenn man den Index verschiebt oder, wie
> hier, im Induktionsschritt die Ausdrücke anpassen muss!?
richtig, alle n verändern.
jetzt [mm]\summe_{k=1}^{n+1} \bruch{1}{n+1+k}[/mm] auch umschreiben: [mm]\summe_{k=1}^{n+1} \bruch{1}{n+(1+k)}= \summe_{k=2}^{n+2} \bruch{1}{n+k}= \summe_{k=1}^{n} \bruch{1}{n+k}-\bruch{1}{n+1}+\bruch{1}{2n+1}+\bruch{1}{2n+2}[/mm]
jetzt nur noch ausrechnen
>
> zu b)
>
> I.A. (n=2):
>
> [mm]\summe_{k=1}^{1}[/mm] k(2-k) = 1 = [mm]\bruch{ 2^{3}-2}{6}[/mm]
>
> I.S. (n [mm]\mapsto[/mm] n+1):
>
> [mm]\summe_{k=1}^{n}[/mm] k(n+1-k) = ( [mm]\summe_{k=1}^{n-1}[/mm] kn+k+
> [mm]k^{2})[/mm] + n(n+1-n) = ( [mm]\summe_{k=1}^{n-1}[/mm] k(n-k)+k) + n = (
> [mm]\summe_{k=1}^{n-1}[/mm] k(n-k)) + ( [mm]\summe_{k=1}^{n-1}[/mm] k) + n =
> ... nach I.V. ... = [mm]\bruch{ n^{3}-n}{6}[/mm] + [mm]\summe_{k=1}^{n}[/mm]
> k
du brauchst: [mm] $\summe_{k=1}^{n} [/mm] k [mm] =\bruch{n*(n+1)}{2}$
[/mm]
und du musst vergleichen mit$ [mm] \bruch{(n+1)^6-n-1}{6}$
[/mm]
Gruss leduart
|
|
|
|