www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Voll. Induktion - Fakultät
Voll. Induktion - Fakultät < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Voll. Induktion - Fakultät: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:08 Do 01.12.2011
Autor: flo_87

Aufgabe
Beweisen Sie mithilfe der vollständigen Induktion:

3 * 3! + 4 * 4! + ... + n * n! = (n + 1)!-6

Hey, guten Morgen.
Ich komme bei dieser Aufgabe am Ende nicht weiter. Ich hoffe es kann mir jemand helfen?

Habe die vollständige Induktion mal soweit durchgeführt, wie ich konnte:
Im Induktionsschluss muss ich ja zeigen, dass die Gleichung mit n+1 funktioniert:

3 * 3! + 4 * 4! + ... + n * n! + (n+1) * (n+1)! = (n + 2)!-6
(n+1)! - 6 + (n+1) * (n+1)! = (n+2)! - 6      | +6
(n+1)! + (n+1) * (n+1)! = (n+2)!

Und nun weiß ich nicht, wie ich die linke Seite weiter vereinfachen soll, sodass ich beweisen kann, dass beide Seiten gleich sind.
Die Fakultät bereitet mir da ein bisschen Probleme.

Kann mir hier bitte jemand weiterhelfen?
Schonmal vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

gruss Florian

        
Bezug
Voll. Induktion - Fakultät: Antwort
Status: (Antwort) fertig Status 
Datum: 07:26 Do 01.12.2011
Autor: luis52

Moin flo_87,

[willkommenmr]


Zu zeigen ist also [mm] $\sum_{i=3}^ni [/mm] i!=(n+1)!-6$. Die Behauptung ist offenbar richtig fur $n=3$ (das musst du ueberpruefen!). Sie gelte fuer $n_$.

Es ist nach IV

[mm] $\sum_{i=3}^{n+1}i i!=\sum_{i=3}^{n}i [/mm] i!+(n+1)(n+1)!=(n+1)!-6+(n+1)(n+1)!=(n+1)!(n+2)-6=(n+2)!-6$.

vg Luis

Bezug
                
Bezug
Voll. Induktion - Fakultät: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:50 Do 01.12.2011
Autor: flo_87

Hey, vielen dank für deine schnelle Antwort !!!

(n+1)! - 6 + (n+1) (n+1)! = -6 + (n+2) (n+1)!
Dieser Schritt war mir die ganze Zeit unklar. Hab jetzt die Fakultät einfach mal mit einem beliebigen n ausgeschrieben. Also zb mit n=2:
- 6 (3*2*1) + 3 (3*2*1)

und dann ist mir erst klar geworden wie du auf (n+2) kommst. Die Fakultät (n+1)! kommt ja zweimal vor und kann einmal gestrich werden, wenn man sie einfach einmal mehr multipliziert. Deswegen (n+2).

Die Fakultät hat mich bei der Aufgabe ein bisschen durcheinander gebracht. Jetzt hab ich es aber verstanden.

dankeschön!!!
gruss flo...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]