www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Volatilität
Volatilität < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volatilität: Volatilität einer Aktie
Status: (Frage) überfällig Status 
Datum: 17:41 Mi 12.05.2010
Autor: Matheliebhaber

Aufgabe
Ein Kleinanleger möchte 10.000Euro in zwei Aktien Xund Y investieren,wobei beide Aktien dieselbe mittlere Rendite und eine empirische Kovarianz von 4 aufweisen.
Aktie X weist mit 12 Euro die größerer Volatilität auf.
Um das Risiko zu minimieren,errechnet ein Börsenexperte,dass er exakt 3000Euro in Aktie X anlegen muss und den Rest in Aktie Y.
Welche Volatilität hat die Aktie Y?

Kann mit bitte jemand bei dieser Aufgabe helfen?Zuerst würde ich gerne den Begriff mittlere Rendite erklärt bekommen,gibt es dafür eine Formel?
Auch Tipps nehmen ich liebend gerne an und ich werde auch versuchen mitzuwirken,den Anfang muss aber bitte jemand machen.Dankeschön!

        
Bezug
Volatilität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 14.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Volatilität: lösungsvorschlag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:16 Fr 02.07.2010
Autor: th0m

Hi,

die Aufgabe taucht ja fast jedes Jahr in Runde-Klausuren auf, ist imer derselbe Weg:

Für das Portfoliorisiko [mm] \sigma_P [/mm] für zwei Aktien $X, Y$ mit Volatilität [mm] $\sigma_X, \sigma_Y$, [/mm] sowie mit Portfolioanteil [mm] $w_1$ [/mm] und [mm] $w_2=1-w_1$ [/mm] und letztlich mit Kovarianz [mm] $\sigma_{XY}$ [/mm] gilt nach Vorlesung:

[mm] \sigma_P=\left(w_1^2\sigma_X^2+w_2^2\sigma_Y^2+2w_1w_2\sigma_{XY}\right)^{\frac{1}{2}}=\left(w_1^2\sigma_X^2+(1-w_1)^2\sigma_Y^2+2w_1(1-w_1)\sigma_{XY}\right)^{\frac{1}{2}} [/mm]

Dies gilt es nun in [mm] $w_1$ [/mm] zu minimieren, also nach [mm] $w_1$ [/mm] ableiten und den Zähler gleich Null setzen:

[mm] $2w_1\sigma_X^2-2(1-w_1)\sigma_Y^2+2\sigma_{XY}-4w_1\sigma_{XY}=0$ [/mm]

Nun die gegebenen Daten einsetzen:

[mm] $2*0,3*144-2*(1-0,3)*\sigma_Y^2+2*4-4*0,3*4=0\Leftrightarrow89,6=1,4\sigma_Y^2\Leftrightarrow\sigma_Y=8$ [/mm]

th0m

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]