www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - Verweilzeit
Verweilzeit < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verweilzeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Sa 02.04.2016
Autor: Ice-Man

Hallo,

ich habe bitte nur mal eine Verständnisfrage zum Thema Verweilzeit bzw. LaPlace...

Gegeben sein,

[mm] f(s)=\bruch{a^{2}}{(s+a)^{2}} [/mm]

In meiner Korrespondenztabelle finde ich,

[mm] \bruch{1}{(s+a)^{2}} \hat= t*e^{-\alpha*t} [/mm]

Daraus ergibt sich,

[mm] f(t)=a^{2}*t*e^{-at} [/mm]

Meine Frage ist jetzt warum ich den Zählerwert des Frequenzbereiches [mm] (a^{2}) [/mm] in der e-Funktion vom Zeitbereich nur als a schreibe?

Sorry das ich das so umständlich formuliere aber mir fällt gerade nichts anderes ein.
Ich hoffe trotzdem das jemand mein Problem versteht und mir weiterhelfen kann.

Schon einmal vielen Dank im Voraus.

        
Bezug
Verweilzeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 So 03.04.2016
Autor: Infinit

Hallo Ice-man,
doese Korrespondenz ist schon richtig, die Teilfunktionen im Zeitbereich betstehen aus Überlagerungen gedämpfter Schwingungen. Das [mm] a^2 [/mm] inm Zähler ist in keiner Art mit einer Laplace-Variablen s verbunden und ist insofern als Konstante zu betrachten. Diese Konstanten ändern sich jedoch bei der Transformation nicht.
Viele Grüße,
Infinit

Bezug
                
Bezug
Verweilzeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mo 04.04.2016
Autor: Ice-Man

Vielen Dank,

also verstehe ich das richtig.

Ich "beachte das im Exponenten der e-Funktion nicht"?
Sondern "schreibe diese einfach stur ab"?

Ich war nur verwundert das im Exponenten der e-Funktion dann ein "a" auftaucht. Oder habe ich mich dort verschrieben und es soll ein [mm] \alpha [/mm] sein?

Bezug
                        
Bezug
Verweilzeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Mo 04.04.2016
Autor: Infinit

Hallo ica-man,
ja, das Alpha macht da keinen Sinn, es muss das "a" aus der Korrespondenz sein.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Verweilzeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Mo 04.04.2016
Autor: Ice-Man

Das Problem ist, in meiner Korrespondenztabelle steht [mm] \alpha [/mm]

Das ist halt das was mich verwirrt.

Bezug
                                        
Bezug
Verweilzeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Mo 04.04.2016
Autor: Infinit

Das verstehe ich, aber das kann einfach nicht stimmen. Entweder steht im Spiegelbereich auch ein [mm] \alpha [/mm] oder es ist ein "Dreckfuhler" ;-)
Viele Grüße,
Infinit

Bezug
                                                
Bezug
Verweilzeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Mo 04.04.2016
Autor: Ice-Man

Ok, aber in meiner Korrespondenztabelle steht jeweils im Zeit, als auch im Frequenzbereich immer ein Alpha.

Beispiel

[mm] \bruch{1}{(s+\alpha)^{2}} [/mm] (Im Frequenzbereich) [mm] \hat= t*e^{-\alpha*t} [/mm] (Im Zeitbereich)

Also wäre das immer falsch?

Bezug
                                                        
Bezug
Verweilzeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Mo 04.04.2016
Autor: chrisno


> Ok, aber in meiner Korrespondenztabelle steht jeweils im
> Zeit, als auch im Frequenzbereich immer ein Alpha.
>  
> Beispiel
>  
> [mm]\bruch{1}{(s+\alpha)^{2}}[/mm] (Im Frequenzbereich) [mm]\hat= t*e^{-\alpha*t}[/mm]
> (Im Zeitbereich)
>  
> Also wäre das immer falsch?

Wieso? Namen sind Schall und Rauch. Streiche in Deiner Tabelle die beiden [mm] $\alpha$ [/mm] durch und schreibe jeweils ein a hin. Passt es dann?


Bezug
                                                                
Bezug
Verweilzeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:10 Di 05.04.2016
Autor: Ice-Man

Ich glaube das verwirrt mich dann nur noch mehr.

Bezug
                                                                        
Bezug
Verweilzeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Di 05.04.2016
Autor: chrisno

Du musst da eine Denkblokade lösen.
Die Tabelle sagt:
$ [mm] \bruch{1}{(s+irgendwas)^{2}} \hat= t\cdot{}e^{-irgendwas\cdot{}t} [/mm] $

Deine Aufgabe ist, die Transformierte von $ [mm] \bruch{wasanderes^2}{(s+irgendwas)^{2}}$ [/mm] zu finden.

Wegen der Linearität gilt
$ [mm] \bruch{wasanderes^2}{(s+irgendwas)^{2}} \hat= wasanderes^2 \cdot t\cdot{}e^{-irgendwas\cdot{}t} [/mm] $

In Deinem Fall ist nun gerade irgendwas = a und ebenfalls wasanderes = a.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]