www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungsfunktionen
Verteilungsfunktionen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 16:23 Do 16.06.2005
Autor: Mathi123

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo, kann mir jemand eine Lösung zu dieser Aufgabe geben?

Aufgabe: Bestimmen Sie die Verteilungsfunktion F: R [mm] \to [/mm] [0, 1] (d.h. die durch F(x) = P((− [mm] \infty, [/mm] x]) festgelegte Funktion)
a) einer Gleichverteilung auf [0, 1].
b) einer exp( [mm] \lambda)–Verteilung. [/mm]
Bestimmen Sie auch die Ableitung dieser Funktionen.

        
Bezug
Verteilungsfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Do 16.06.2005
Autor: Julius

Hallo!

Wieso versuchst du denn nicht hier wenigstens mal ein paar eigene Ansätze anzubieten? Ich meine du kennst die Definition, so dass der Rest Schulniveau ist (Integrale ausrechnen).

Naja, ich bin mal wieder zu gutmütig und rechne es vor.

Im ersten Fall ist offenbar

$f(t)= [mm] 1_{[0,1]}(t)$ [/mm]

die Dichte der Gleichverteilung. Daher gilt:

$F(x) = [mm] \int\limits_{-\infty}^x 1_{[0,1]}(t)\, [/mm] dt = [mm] \left\{ \begin{array}{ccc} 0 & , & x<0 \\[5pt] \int\limits_0^x 1\, dt = x & , & 0 \le x \le 1,\\[5pt] 1 & , & x>1. \end{array} \right.$ [/mm]

Im zweiten Fall ist

$f(t)= [mm] \lambda e^{-\lambda t} \cdot 1_{[0,1]}(t)$ [/mm]

die Dichte der Exponentialverteilung. Daher gilt:

$F(x) = [mm] \int\limits_{-\infty}^x \lambda e^{-\lambda t} \cdot 1_{[0,1]}(t)\, [/mm] dt = [mm] \int\limits_0^x \lambda e^{-\lambda t}\, [/mm] dt = [mm] \left[ -e^{-\lambda t} \right]_{t=0}^{t=x} [/mm] = 1 - [mm] e^{-\lambda x}$. [/mm]

Durch Ableiten bekommt man natürlich die Dichten wieder zurück.

Viele Grüße
Julius

Bezug
                
Bezug
Verteilungsfunktionen: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 Sa 18.06.2005
Autor: Mathi123

Sers´
danke für die Hilfe. Sorry, dass ich die eigenen Ansätze nicht hingeschrieben habe. Bin noch neu hier. Tue mich sehr schwer mit der Definition der Verteilungsfunktion.
Nochmals vielen Dank.
Grüße Mathi.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]