www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilungsfunktion d. Zufalls
Verteilungsfunktion d. Zufalls < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion d. Zufalls: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Fr 01.12.2006
Autor: stevarino

Aufgabe
Die Zufallsgröße X sei stetig gleichmäßig verteilt auf -1,1, d.h ihre Dichtefunktion f gegeben ist durch

f(x)=0 für x<-1
    [mm] \bruch{1}{2} [/mm]   für -1 [mm] \le [/mm] x [mm] \le [/mm] 1
0 für [mm] x\ge [/mm] 1
Berechnen Sie Verteilungsfunktion der Zufallsgröße Y=|X|

Hallo

Kann mir bitte jemand sagen mit welcher Formel ich das berechnen kann. Ich hab schon  gegoogelt aber nichts gefunden oder wenn ich was finde versteh ichs nicht.
Wenns geht mit kurzer Erläuterung.

Danke

lg Stevo

        
Bezug
Verteilungsfunktion d. Zufalls: falsches Forum
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 Fr 01.12.2006
Autor: stevarino

Hallo

Ich hab leider das falsche Forum erwischt, könnte bitte jemand den Beitrag ins Hochschulforum verschieben

Danke

lg Stevo

Bezug
        
Bezug
Verteilungsfunktion d. Zufalls: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Sa 02.12.2006
Autor: luis52

Hallo Stevo,

ueberlege dir zunaechst, welche Werte $|X|$ annehmen kann: Offenbar Werte
$y$ mit [mm] $0\le y\le [/mm] 1$. Dann ist [mm] $F(y)=P(|X|\le [/mm] y)=...$. Ab hier verlasse ich
dich, damit du selbst weiter ueberlegen kannst. Tipp: Mach dir ein Bildchen...

hth        

Bezug
                
Bezug
Verteilungsfunktion d. Zufalls: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:04 Sa 02.12.2006
Autor: stevarino

Hallo

ich bin noch nicht wirklich weitergekommen aber ich probiers mal

F(x)= 0 für x<-1
        [mm] \bruch{1}{2}*x [/mm] für -1 [mm] \le [/mm] x <1
         0 für [mm] x\ge [/mm]

[mm] G(x)=P(Y
F(y)=    0 für y<1
             [mm] \bruch{1}{2}*y [/mm] für y=1
            1  für y>1

Ich glaub zwar nicht das das so stimmt aber vielleicht ja doch...

Danke

lg stevo

Bezug
                        
Bezug
Verteilungsfunktion d. Zufalls: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 02.12.2006
Autor: luis52

Beachte:

1) Die Verteilungsfunktion von $X$ ist gegeben durch
$P(X [mm] \le [/mm] x)=(x+1)/2$ fuer [mm] $-1\le x\le [/mm] 1$.

2) [mm] $P(|X|\le y)=P(-y\le X\le [/mm] y)$

...


hth

Bezug
                                
Bezug
Verteilungsfunktion d. Zufalls: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Sa 02.12.2006
Autor: stevarino

Hallo

Ich gebs bald auf

Ist F(x) dasselbe wie P(X [mm] \le [/mm] x)=(x+1)/2 fuer [mm] -1\le x\le [/mm] 1.

dann müsste ich auf (x+1)/2 fuer [mm][mm] -1\le x\le [/mm] 1 kommen mit [mm] F(x)=\integral_{- \infty}^{x}{f(t) dt}=\integral_{- \infty}^{x}{1/2 dt}=\infty [/mm]
was mich zum Schluss führt es ist nicht dasselbe oder ich bin zu dämlich ein uneigentliche Integral zu berechnen

lg stevo

Bezug
                                        
Bezug
Verteilungsfunktion d. Zufalls: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Sa 02.12.2006
Autor: luis52

Hallo stevo,

nicht verzagen, Hilfe naht.

Die Verteilungsfunktion von $X$ ist nur interessant fuer [mm] $-1\le [/mm] x [mm] \le [/mm] 1$. Deswegen
musst du drei Faelle unterscheiden. Ist $x<-1$, so gilt [mm] $P(X\le [/mm] x)=0$ und
ist $1<x$, so ist [mm] $P(X\le [/mm] x)=1$. Bleibt der Fall [mm] $-1\le [/mm] x [mm] \le [/mm] 1$. Du hast
Recht, es ist [mm] $P(X\le x)=\int_{-\infty}^x 1/2\,dt$. [/mm] Bedenke aber, dass
der Integrationsbereich ausserhalb des Intervalls $(-1,x)$ irrelevant
ist, da dort die Dichte $f(x)$ verschwindet. Bleibt also

[mm] $P(X\le x)=\int_{-1}^x 1/2\,dt=\left[\frac{t}{2}\right]_{-1}^x=(x+1)/2$. [/mm]

Ich hoffe, das hilft dir nun weiter auf die Spruenge.
                                                

Bezug
                        
Bezug
Verteilungsfunktion d. Zufalls: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 06.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]