www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Verteilungsfunktion
Verteilungsfunktion < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Wo liegt der Hacken?
Status: (Frage) beantwortet Status 
Datum: 20:05 Mo 05.09.2011
Autor: energizer

Aufgabe
Folgende Verteilungsdichtefunktion ist gegeben , nun ist die Verteilungsfunktion davon gesucht.

[Dateianhang nicht öffentlich]




Mein Problem ist einfach das meine Verteilungsfunktion für x>0.5 größer als 1 ist..

[mm] f(x)=\begin{cases} \bruch{4}{3}x+\bruch{4}{3}, & \mbox{für } {-0.5}{\le}{x}{\le}{0} \\ -\bruch{4}{3}x+\bruch{4}{3}, & \mbox{für } {0}{\le}{x}{\le}{0.5} \end{cases} [/mm]

[mm] P_1=\bruch{4}{3}*\integral_{-0.5}^{x}{(u + 1) du}=\bruch{4}{3}*[\bruch{x^2}{2}+x+\bruch{3}{8}]=\bruch{2}{3}*x^2+\bruch{4}{3}*x+1/2 [/mm]

Vielen Dank schon mal

[mm] P_2=\bruch{1}{2}+\bruch{4}{3}*\integral_{0}^{x}{(-u + 1) du}=\bruch{1}{2}+\bruch{4}{3}[-\bruch{x^2}{2}+x]=\bruch{1}{2}-\bruch{2}{3}*x^2+\bruch{4}{3}*x [/mm]


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Mo 05.09.2011
Autor: Al-Chwarizmi


> Folgende Verteilungsdichtefunktion ist gegeben , nun ist
> die Verteilungsfunktion davon gesucht.
>  
> [Dateianhang nicht öffentlich]
>  
>
> Mein Problem ist einfach das meine Verteilungsfunktion für
> x>0.5 größer als 1 ist..

Das sollte natürlich nicht sein, falls die Dichtefunktion
korrekt angegeben ist ...

  

> [mm]f(x)=\begin{cases} \bruch{4}{3}x+\bruch{4}{3}, & \mbox{für } {-0.5}{\le}{x}{\le}{0} \\ -\bruch{4}{3}x+\bruch{4}{3}, & \mbox{für } {0}{\le}{x}{\le}{0.5} \end{cases}[/mm]
>  
> [mm]P_1=\bruch{4}{3}*\integral_{-0.5}^{x}{u + 1 du}=\bruch{4}{3}*[\bruch{x^2}{2}+x+\bruch{3}{8}]=\bruch{2}{3}*x^2+\bruch{4}{3}*x+1/2[/mm]
>  
> Vielen Dank schon mal
>  
> [mm]P_2=\bruch{1}{2}+\bruch{4}{3}*\integral_{0}^{x}{-u + 1 du}=\bruch{1}{2}+\bruch{4}{3}[-\bruch{x^2}{2}+x]=\bruch{1}{2}-\bruch{2}{3}*x^2+\bruch{4}{3}*x[/mm]

  

Deine Rechnungen scheinen richtig zu sein. Du solltest
aber z.B. die Integranden noch in Klammern setzen.

Beachte aber, dass dein Term [mm] P_1 [/mm] nur für [mm] x\in[-0.5\,.....\,0] [/mm] und
[mm] P_2 [/mm] nur für [mm] x\in[0\,.....\,0.5] [/mm]  gültig ist. Für x<-0.5 ist P=0 und
für x>0.5 ist P=1  !

LG   Al-Chw.  


Bezug
                
Bezug
Verteilungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 Mo 05.09.2011
Autor: energizer

Hm ich glaube ich hatte mich im Plot-Programm vertippt, bei Grenzen.

Habs jetzt nochmal eingetippt, es ist auch jetzt bei x=0.5 P2(x)=1
Jetzt passt es auch

Danke.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]