www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Verteilung der Zufallsvariable
Verteilung der Zufallsvariable < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung der Zufallsvariable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:26 Do 17.11.2005
Autor: Didi

Hallo,

Hab' hier ne Aufgabe bei der ich mich nicht sicher bin, wie ich mit ihr umgehen soll.

Auf dem mit der Gleichverteilung P versehenen Einheitsintervall [mm] \Omega [/mm] =(0,1] sei die Zufallsvariable Z durch Z(w)=-log(w), [mm] w\in \Omega [/mm] ,definiert. Bestimmen Sie die Verteilung von Z durch Berechnung von [mm] P[{w\in\Omega:Z(w)>\alpha}], \alpha \in\IR [/mm]


Zu meinen Überlegungen:

In [mm] P[{w\in\Omega:Z(w)>\alpha}] [/mm] kann ich das Z(w) einfach durch -log(w) ersetzten.  Außerdem muss auch noch das Einheitsintervall (0,1] mit in die Berechnung einfließen. Muss ich vielleicht einfach das  [mm] \integral_{0}^{1} [/mm] {-log(w) dw} bilden? Stimmt dann aber überhaupt, dass die 0 untere Grenze ist? Das Intervall ist ja schließlich halboffen.
Alternativ weiß ich auch, dass [mm] P[z(w)\le\alpha]=1-P[Z(w)>\alpha]. [/mm] Da weiß ich aber gar nicht, wie ich die Verteilung berechnen könnte?

Danke schon mal für die Hilfe. Hab die Frage in keinen anderen Foren gestellt oder gefunden.

        
Bezug
Verteilung der Zufallsvariable: Vtlg.fkt.
Status: (Antwort) fertig Status 
Datum: 15:37 Fr 18.11.2005
Autor: danielinteractive

Hallo Didi,

> Auf dem mit der Gleichverteilung P versehenen
> Einheitsintervall [mm]\Omega[/mm] =(0,1] sei die Zufallsvariable Z
> durch Z(w)=-log(w), [mm]w\in \Omega[/mm] ,definiert. Bestimmen Sie
> die Verteilung von Z durch Berechnung von
> [mm]P[{w\in\Omega:Z(w)>\alpha}], \alpha \in\IR[/mm]
>  
>
> Zu meinen Überlegungen:
>  
> In [mm]P[{w\in\Omega:Z(w)>\alpha}][/mm] kann ich das Z(w) einfach
> durch -log(w) ersetzten.  

Das ist schon mal gut.

> Außerdem muss auch noch das
> Einheitsintervall (0,1] mit in die Berechnung einfließen.
> Muss ich vielleicht einfach das  [mm]\integral_{0}^{1}[/mm] {-log(w)
> dw} bilden?

Ne, so nich.

> Stimmt dann aber überhaupt, dass die 0 untere
> Grenze ist? Das Intervall ist ja schließlich halboffen.

Das is beim Integral wurscht.

>  Alternativ weiß ich auch, dass
> [mm]P[z(w)\le\alpha]=1-P[Z(w)>\alpha].[/mm] Da weiß ich aber gar
> nicht, wie ich die Verteilung berechnen könnte?

OK, also fangen wir mal an. Gesucht ist
[mm]F_Z(\alpha)\stackrel{Def.}{=} P(\{\omega \in \Omega : Z(\omega) \leq \alpha \})=1-P(\{\omega \in \Omega : Z(\omega) > \alpha\})=[/mm]
[mm]1-P(\{\omega \in \Omega : -log(\omega) > \alpha\})=1-P(\{\omega \in \Omega : log(\omega) < -\alpha\})=[/mm]
[mm]1-P(\{\omega \in (0,1]: \omega < \exp(-\alpha)\})=\begin{cases} 1-P((0,\exp(-\alpha))), & \mbox{für } \alpha > 0 \\ 1-P(\Omega), & \mbox{für } \alpha \leq 0 \end{cases}[/mm]
Da wir die stetige Gleichverteilung als P haben, also
[mm]F_Z(\alpha)=\begin{cases} 1-\exp(-\alpha), & \mbox{für } \alpha > 0 \\ 0, & \mbox{für } \alpha \leq 0 \end{cases}[/mm] oder noch kürzer:
[mm]F_Z(\alpha)=1-\min\{\exp(-\alpha),1\}[/mm]

mfg
Daniel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]