www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Vertauschbarkeit Diff / Integr
Vertauschbarkeit Diff / Integr < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vertauschbarkeit Diff / Integr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Mi 15.08.2018
Autor: Takota

Hallo,

in meinem Buch steht ohne Beweis, der "Satz über die Vertauschbarkeit von Differenziation und Integration im Mehrdimensionalen".

Den Satz für den eindimensionalen Fall, wo gleichmäßige Konvergenz Voraussetzung ist kenne ich. Meine Frage, kann man sich den Satz für den Mehrdimensionalen Fall mit dem Fall für den eindimensionallen irgendwie vergleichen, bzw., plausibel machen? Oder hat sonst jemand eine Idee  wie man sich das klar machen kann?

LG
Takota

        
Bezug
Vertauschbarkeit Diff / Integr: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mi 15.08.2018
Autor: fred97


> Hallo,
>  
> in meinem Buch steht ohne Beweis, der "Satz über die
> Vertauschbarkeit von Differenziation und Integration im
> Mehrdimensionalen".
>  
> Den Satz für den eindimensionalen Fall, wo gleichmäßige
> Konvergenz Voraussetzung ist kenne ich. Meine Frage, kann
> man sich den Satz für den Mehrdimensionalen Fall mit dem
> Fall für den eindimensionallen irgendwie vergleichen,
> bzw., plausibel machen? Oder hat sonst jemand eine Idee  
> wie man sich das klar machen kann?
>  


Auf Deine Frage kann man so nicht antworten. In der Analysis gibt es Sätze über die  Vertauschbarkeit von Differentiation und Integration haufenweise!

Willst  Du also  eine  Antwort,  so zitiere den  Satz  aus  Deinem Buch mit allem  Drumm und Dran .

Noch  was :  im eindimensionalen gibt es jede  Menge  Sätze, in denen gleichmäßige Konvergenz nicht Voraussetzung ist (Lebesgue,  Fatou,  Beppo Levi,  .....)



> LG
>  Takota


Bezug
                
Bezug
Vertauschbarkeit Diff / Integr: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:59 Do 16.08.2018
Autor: Takota

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo fred, wie gewünscht habe ich dir den Satz aufgeschrieben.

Betrachtet man für $n \varepsilon \IN$ den n dimensionalen abgeschlossenen Quader

$Q_n:= \left\{\vec x \varepsilon\IR^n|a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2,...,a_n \le x_n \le b_n \right\}$

und darauf eine stetige Funktion

$f:Q_n \to \IR, \vec x \mapsto f(x_1,x_2,...,x_n)$

Weiter sei auf dem abgeschlossenen n-1 dimensionalen Quader

$Q_n:= \left\{\vec x':= \begin{pmatrix} x_2 \\ .\\.\\. \\ x_n \end{pmatrix} \varepsilon\IR^n^-^1|a_2 \le x_2 \le b_2,...,a_n \le x_n \le b_n \right\}\subset \IR^n^-^1$

die Funktion

$F:Q_n_-_1 \to \IR, \quad \vec x'\mapsto F(x_2,x_3,...,x_n):= \integral_{a_1}^{b_1}{f(x_1,x_2,...,x_n) dx_1}$

definiert. Dann gilt der folgende Satz:

Satz-Anfang

Mit den eben eingeführten Voraussetzungen gilt:

1) Aus der Stetigkeit von f folgt die Stetigkeit von F

2) Ist die Funktion f zusätzlich stetig partiell differenzierbar nach den Variablen $x_2, x_3, ..., x_n$ auf der Menge

$\left\{\vec x \varepsilon\IR^n|a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2,...,a_n \le x_n \le b_n \right\}\subset \ Q_n$

dann ist F partiell nach $x_2, x_3, ..., x_n$ differenzierbar mit den stetigen partiellen Ableitungen

${\frac{\partial F}{\partial x_k} (x_2,x_3,...,x_n)= \integral_{a_1}^{b_1}{\frac{\partial F}{\partial x_k} (x_1,x_2,...,x_n) dx_1}$

für alle $k \varepsilon {2,3,...,n}$

Satz-Ende

Bezug
                        
Bezug
Vertauschbarkeit Diff / Integr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Do 16.08.2018
Autor: fred97


> Hallo fred, wie gewünscht habe ich dir den Satz
> aufgeschrieben.
>  
> Betrachtet man für [mm]n \varepsilon \IN[/mm] den n dimensionalen
> abgeschlossenen Quader
>  
> [mm]Q_n:= \left\{\vec x \varepsilon\IR^n|a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2,...,a_n \le x_n \le b_n \right\}[/mm]
>  
> und darauf eine stetige Funktion
>  
> [mm]f:Q_n \to \IR, \vec x \mapsto f(x_1,x_2,...,x_n)[/mm]
>  
> Weiter sei auf dem abgeschlossenen n-1 dimensionalen
> Quader
>  
> [mm]Q_n:= \left\{\vec x':= \begin{pmatrix} x_2 \\ .\\.\\. \\ x_n \end{pmatrix} \varepsilon\IR^n^-^1|a_2 \le x_2 \le b_2,...,a_n \le x_n \le b_n \right\}\subset \IR^n^-^1[/mm]
>  
> die Funktion
>  
> [mm]F:Q_n_-_1 \to \IR, \quad \vec x'\mapsto F(x_2,x_3,...,x_n):= \integral_{a_1}^{b_1}{f(x_1,x_2,...,x_n) dx_1}[/mm]
>  
> definiert. Dann gilt der folgende Satz:
>  
> Satz-Anfang
>  
> Mit den eben eingeführten Voraussetzungen gilt:
>  
> 1) Aus der Stetigkeit von f folgt die Stetigkeit von F
>  
> 2) Ist die Funktion f zusätzlich stetig partiell
> differenzierbar nach den Variablen [mm]x_2, x_3, ..., x_n[/mm] auf
> der Menge
>  
> [mm]\left\{\vec x \varepsilon\IR^n|a_1 \le x_1 \le b_1, a_2 \le x_2 \le b_2,...,a_n \le x_n \le b_n \right\}\subset \ Q_n[/mm]
>  
> dann ist F partiell nach [mm]x_2, x_3, ..., x_n[/mm] differenzierbar
> mit den stetigen partiellen Ableitungen
>  
> [mm]{\frac{\partial F}{\partial x_k} (x_2,x_3,...,x_n)= \integral_{a_1}^{b_1}{\frac{\partial F}{\partial x_k} (x_1,x_2,...,x_n) dx_1}[/mm]
>  
> für alle [mm]k \varepsilon {2,3,...,n}[/mm]
>  
> Satz-Ende


O.k, jetzt bin ich im Bilde. Aber was ist denn Deine Frage?

Bezug
                                
Bezug
Vertauschbarkeit Diff / Integr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Do 16.08.2018
Autor: Takota

Hallo fred,
die Frage habe ich ja Eingangs gestellt. Ich dachte du könntest mir den Satz irgendwie plausibel machen. Vielleicht kann man sich den Satz anschaulich klar machen, etwa im 3 Dimensionalen? Kann man den Satz vielleicht mit dem 1-Dimensionalen in Verbindung bringen? Es wird ja nach jeweils einer Variablen abgeleitet und die andern jeweils konstant gehalten, in dem Moment ist das sowas wie ableiten im 1-Dimensionalen und dort kann man ja das Integralzeichen mit dem Ableitungsoperator vertauschen - vorausgesetzt f ist gleichmäßig konvergent. Gleichmäßige Konvergenz habe ich aber in den Voraussetzungen nicht gefunden...soweit mein Versuch das irgendwie plausibel zu machen - was ja kein Beweis sein soll.

Bezug
                                        
Bezug
Vertauschbarkeit Diff / Integr: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Fr 17.08.2018
Autor: fred97


> Hallo fred,
> die Frage habe ich ja Eingangs gestellt. Ich dachte du
> könntest mir den Satz irgendwie plausibel machen.

Was verstehst Du darunter. Ein Beweis ? Wenn ja, so findest Du den Beweis in jedem vernünftigen Analysisbuch.


> Vielleicht kann man sich den Satz anschaulich klar machen,
> etwa im 3 Dimensionalen? Kann man den Satz vielleicht mit
> dem 1-Dimensionalen in Verbindung bringen?

Es genügt den Fall n=2 zu betrachten, ist Dir klar warum ?


> Es wird ja nach
> jeweils einer Variablen abgeleitet und die andern jeweils
> konstant gehalten, in dem Moment ist das sowas wie ableiten
> im 1-Dimensionalen und dort kann man ja das Integralzeichen
> mit dem Ableitungsoperator vertauschen -


> vorausgesetzt f
> ist gleichmäßig konvergent.

Puuh ! Jetzt zeigt sich, dass Du mit elementaren Begriffen nicht vertraut bist. "f ist gleichmäßig konvergent " ist völlig sinnlos. Gleichmäßige Konvergenz ist eine Eigenschaft von Funktionenfolgen (Funktionenreihen).




> Gleichmäßige Konvergenz
> habe ich aber in den Voraussetzungen nicht
> gefunden...soweit mein Versuch das irgendwie plausibel zu
> machen - was ja kein Beweis sein soll.

Wie gesagt: schau Dir einen Beweis des obigen Satzes an !


Bezug
                                                
Bezug
Vertauschbarkeit Diff / Integr: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:18 Sa 18.08.2018
Autor: Takota

Hallo fred,

ich kann verstehen, das es einem Profi wie dir, manchmal nicht leicht fällt einem Laien wie ich es bin, mathematische, komplexe Sachverhalte auf relativ einfaches Niveau runterzubrechen, weil man da ja auch nicht mehr ganz exakt mathematisch begründen kann. Ich versuche die Beweise, die der Autor in meinen Büchern behandelt so gut es geht nachzuvollziehen. Für manche Beweise werden dann wieder Sätze benötigt, die zu Beweisen den Rahmen des Buches sprengen würden und man von einem großen Themenbereich in den anderen kommt. Diese Sätze aber nur einfach hinzunehmen ist für mich unbefriedigend und ich versuche mir das halt irgendwie plausibel zu machen, so das ich zumindestens ansatzweise den Beweis für den Satz verstehe.

Das wollte ich jetzt nur mal zu meiner Rechtfertigung sagen :-)

Aber zurück zum Thema:

Fall n=2

Folgende "Vermutung" könnte hinter dem Beweis stecken, bzw. das könnte auch die Beweisidee sein:

$   [mm] F(x_2):= \integral_{a}^{b}{f(x_1,x_2) dx_1} [/mm] $

[mm] $\frac{dF(x_2)}{dx_2} [/mm] = [mm] \limes_{h\rightarrow 0}\frac{F(x_2+h)- F(x_2)}{h}$ =\limes_{h\rightarrow 0} \frac{\integral_{a}^{b}{f(x_1,x_2+h) dx_1} - \integral_{a}^{b}{f(x_1,x_2) dx_1}}{h}=\integral_{a}^{b}{\limes_{h\rightarrow 0}\frac{f(x_1,x_2+h)-f(x_1,x_2)}{h}dx_2}=\integral_{a}^{b}{\frac{\partial f(x_1,x_2)}{\partial x_2}dx_2}$ [/mm]

Wobei ich mir mit dem lim-Zeichen nicht sicher bin, ob ich den einfach so in das Integral ziehen kann. Zur Begründung habe ich mir gedacht, wenn im Integranden der Differntialquotient steht, ich auch das lim-Zeichen davor schreiben kann. Ich betrachte ja [mm] $h\to0$. [/mm]  

Ich denke so könnte man das auch auf mehr als 2 Variablen ausweiten...

Gruß
Takota




Bezug
                                                        
Bezug
Vertauschbarkeit Diff / Integr: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Fr 24.08.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]