www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Verständnisfragen zu Vektorana
Verständnisfragen zu Vektorana < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfragen zu Vektorana: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:20 Sa 02.05.2009
Autor: Der-Madde-Freund

Hi,

schonmal sorry für den langen Roman, aber
ich versuche mich gerade darin, die geometrischen Zusammenhänge hinter der Vektoranalysis zu begreifen, was ziemliche Kopfschmerzen verursacht.

Let's start...:

In der Analysis I hat man vornehmlich mit Funktionen zu tun, die von [mm] \IR \to \IR [/mm] abbilden, d.h. unsere "Vektoren" haten jeweils nur eine Komponente nach der man ableiten etc. konnte, z.B. f(x)=x³+5x²+2.
Zeichnen konnte man diese Funktionen meisten auch recht leicht indem man für die Variable x eine beliebige Zahl eingesetzt hat und hat dann eine andere (das Bild) erhalten, die man schön in sein Koordinatensystem eintragen konnte.

Dieses Semester jedoch ärgern sie uns in Analysis II mit fiesen Dingen wie der Vektoranalysis :(
Das "tolle" hieran ist, dass wir nichtmehr die gelieben normalen Funktionen vor uns haben, nein jetzt bilden wir vom [mm] \IR^n \to \IR [/mm] ab! Also etwa: f(x,y,z)=x²+xy-4z³ [Das wäre ja vom [mm] \IR³ \to \IR]. [/mm] Persönlich anschaulicher finde ich es ja, wenn man es so schreibt: [mm] f(\vektor{x_1 \\ x_2 \\ x_3})=x_1²+x_1x_2-4x_3³, [/mm] aber wir sind ja nicht bei wünsch dir was und es ist halt Geschmackssache.

Das erste große Schlagwort sind die Partiellen Ableitungen:
hier leitet man ja nach einer Variablen ab und behandelt die übrigen als Konstanten, rein technisch bereitet mir das weniger Problem aber wie habe ich mir das anschaulich vorzustellen? Wenn ich bei einer normalen (normale Funktionen sind für mich die geliebten Ana I Funktionen =p) die Ableitung berechnet habe, dann konnte man es sich ja als Steigung vorstellen. Wie habe ich mir das bei Partiellen Ableitungen vorzustellen? Ist es die Steigung für diese Variable oder so?

Angenommen ich hätte Mal Lust sone Funktion f(x,y,z)=x²+yz ohne Plotter per Hand zu zeichnen, wie müsste ich das machen? Bei normalen Funktionen ging es ja Zahl rein, Zahl raus, ins Koordinatensystem, fertig. Muss ich hier quasi zwei der Variablen immer als beliebige Konstanten ansehen und die andere Variable laufen lassen, bspw. f(x,1,2)=x²+1*2 und das mit allen möglichen Kombinationen?

Mein nächstes Schlagwort wäre der Gradient. Der Gradient ist doch an sich eine eigenständige Funktion, der alle partiellen Ableitungen in sich trägt, sprich [mm] gradf=\vektor{f_x \\ f_y \\ f_z}. [/mm] Der Gradient zeigt immer in Richtung des höchsten/geringsten Anstiegs, aber warum tut er dies?
Bei einem MAX, bzw. MIN ist der Gradient = 0.

Als leztztes hätte ich dann noch den Begriff der Richtungsableitung... was für eine Überlegung steckt hinter einer Richtungsableitung und warum braucht man diese?

Vielen dank schonmal, und es wird bestimmt bald Teil zwei meines Romanes geben ;)

Gute Nacht!

        
Bezug
Verständnisfragen zu Vektorana: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 04.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]