www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Verständnis um eine Umformung
Verständnis um eine Umformung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnis um eine Umformung: Varianz berechnen
Status: (Frage) überfällig Status 
Datum: 22:11 Mi 21.10.2009
Autor: Druss

Unzwar berechnen wir die Eigenschaft einer Zufallsvariable, in diesem Fall die Varianz von:

[mm] \bruch{1}{4}\summe_{i=1}^{4}x_{i} [/mm]

also: [mm] VAR(\bruch{1}{4}\summe_{i=1}^{4}x_{i}) [/mm]
= [mm] E((\overline{x}-E\overline{x})^{2}) [/mm]
= [mm] E((\bruch{1}{4}\summe_{i=1}^{4}x_{i}-\mu)^{2}) [/mm]

bis hier verstehe ich die Rechnung denn wenn gezeigt wurde (wurde zuvor gezeigt), dass E(x) = [mm] \mu [/mm] ist dann lässt sich der Verschiebungssatz entsprechend anwenden und wie oben zu sehen ist umformen.

Nun kann ich leider den folgenden Schritten nicht folgen:

(hier)
[mm] E(\bruch{1}{16}\summe_{i=1}^{4}\summe_{i=j}^{4}(x_{i}-\mu)(x_{j}-\mu)) [/mm]
= [mm] \bruch{1}{16}\summe_{i=1}^{4}\summe_{i=j}^{4}E((x_{i}-\mu)(x_{j}-\mu)) [/mm]
= [mm] COV(x_{i},x_{j}) [/mm]
= [mm] \bruch{1}{16}\summe_{i=1}^{4}\summe_{i=j}^{4}COV(x_{i},x_{j}) [/mm]
= [mm] \bruch{1}{16}\summe_{i=1}^{4}VAR(x_{i}) [/mm]
[mm] =\bruch{4}{16}\delta^{2} [/mm]
[mm] =\bruch{\delta^{2}}{4} [/mm]


insbesondere Verstehe ich nicht den Umformungsschritt (hier) und dann den anschließenden Schritt zur COV...

Auch verstehe ich nicht ganz wieso man nicht einfach schreiben kann, dass

[mm] VAR(\bruch{1}{4}\summe_{i=1}^{4}x_{i}) [/mm]
[mm] =\bruch{1}{16}\summe_{i=1}^{4}VAR(x_{i}) [/mm]
[mm] =\bruch{1}{16}4\delta^{2} [/mm]
[mm] =\bruch{\delta^{2}}{4} [/mm]

mfg felix




        
Bezug
Verständnis um eine Umformung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Fr 23.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]