www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Verlauf einer Umgehungsstraße
Verlauf einer Umgehungsstraße < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verlauf einer Umgehungsstraße: Keine Ahnung?!
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:22 So 28.01.2007
Autor: Booster

Aufgabe
Eine Umgehungsstraße soll durch eine gerade Strecke fortgeführt werden. Im Anschlusspunkt [mm] \Box [/mm] (4/2) soll der Übergang ohne Knick sein. Die Umgehungsstraße geht weiterhin durch die Punkte (-1/0,5) und (-3/4,5). Gesucht ist eine Funktionsgleichung für den geraden Abschnitt.
a)Find die Parabelfunktion f(x)= ax² für den ersten Abschnitt bis zum Punkt (4/2).
b) Bestimme die Steigung im Punkt P.
c) Bestimme die Gleichung der Tangente im Punkt P.
d) überlege, welche Aufgabenteile mit dem GTR gelöst werden können.

Guten Abend, ich war leider die letzten Mathestunden nicht da, ich habe sonst auch kein Problem in Mathe, aber davon hab ich jetzt Nullplan, vielleicht kann mir das mal ein netter Mensch genauer erklären. Besten dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verlauf einer Umgehungsstraße: Tipps
Status: (Antwort) fertig Status 
Datum: 21:45 So 28.01.2007
Autor: informix

Hallo Booster und [willkommenmr],

Hast du schon unsere Forenregeln wahrgenommen?

Ein bisschen wirst du aus dem vorangegangenen Unterricht doch noch wissen. ;-)

> Eine Umgehungsstraße soll durch eine gerade Strecke
> fortgeführt werden. Im Anschlusspunkt [mm]\Box[/mm] (4/2) soll der
> Übergang ohne Knick sein. Die Umgehungsstraße geht
> weiterhin durch die Punkte (-1/0,5) und (-3/4,5). Gesucht
> ist eine Funktionsgleichung für den geraden Abschnitt.
>  a)Find die Parabelfunktion f(x)= ax² für den ersten
> Abschnitt bis zum Punkt (4/2).

Diese Parabel geht doch wohl durch die angegebenen Punkte, also gilt:
f(-1)=2,5 und f(-3)=4,5
Daraus kannst du bestimmt den Faktor a bestimmen, oder?

Bist du sicher, dass die Funktion [mm] f(x)=ax^2 [/mm] lautet und nicht vielmehr [mm] f(x)=ax^2+bx [/mm] oder [mm] f(x)=ax^2+b [/mm] ?
Für deine Version braucht man nämlich nicht zwei Punkte, um die Konstante zu bestimmen.

>  b) Bestimme die Steigung im Punkt P.

Weißt du, wie man die Steigung einer Parabel bestimmt?
...

>  c) Bestimme die Gleichung der Tangente im Punkt P.
>  d) überlege, welche Aufgabenteile mit dem GTR gelöst
> werden können.

Da ich nicht mit dem GTR arbeite, kann ich dir da nicht weiter helfen... [sorry]

>  Guten Abend, ich war leider die letzten Mathestunden nicht
> da, ich habe sonst auch kein Problem in Mathe, aber davon
> hab ich jetzt Nullplan, vielleicht kann mir das mal ein
> netter Mensch genauer erklären. Besten dank!
>  


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]