www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - Verlauf Regeldifferenz
Verlauf Regeldifferenz < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verlauf Regeldifferenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Fr 16.12.2011
Autor: Zweiti

Aufgabe
Mit der Übertragungsfunktion [mm] $G_S(s)=\bruch{2,5}{(s+1)^2}$ [/mm] der Strecke skizzieren Sie den zeitlichen Verlauf der Regeldifferenz e für einen P-, I-, PI- und PID-Regler (ideal) bei sprungförmiger Eingangsgröße. Nutzen Sie ggf. eine Tabelle zur Laplace-Transformation. Dabei kann
davon ausgegangen werden, dass sowohl das Mess- als auch das Stellglied die Übertragungsfunktionen [mm] G_{Mess}(s) [/mm] = [mm] G_{Stell}(s) [/mm] = 1 aufweisen.

Hallo,

leider fehlt mir ein bißchen die Idee wie ich die Aufgabe lösen kann.
Wenn ich mit dem P-Regler anfange, weiß ich, dass die Übertragungsfkt. des P-Reglers [mm] G_R(s)=K_p [/mm] ist. Die des offenen Kreises wäre dann: [mm] G_{off}(s)=G_S(s)*G_R(s) [/mm] und die des geschlossenen somit: [mm] G_{gesch}(s)=\bruch{G_{off}(s)}{G_{off}(s)+1} [/mm]
Aber leider weiß ich jetzt schon nicht mehr weiter, ich weiß nicht, ob ich die offene oder geschlossene brauche. Und muss ich diese dann zurücktransformieren in den Laplace-Bereich? Und wo ist der Zusammenhang zur Regeldifferenz?

Ich wäre für Hilfe, die mich in die richtige Richtung schubst dankbar!

Vielen Dank,
Zweiti

P.S. Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Verlauf Regeldifferenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Fr 16.12.2011
Autor: fencheltee


> Mit der Übertragungsfunktion [mm]G_S(s)=\bruch{2,5}{(s+1)^2}[/mm]
> der Strecke skizzieren Sie den zeitlichen Verlauf der
> Regeldifferenz e für einen P-, I-, PI- und PID-Regler
> (ideal) bei sprungförmiger Eingangsgröße. Nutzen Sie
> ggf. eine Tabelle zur Laplace-Transformation. Dabei kann
>  davon ausgegangen werden, dass sowohl das Mess- als auch
> das Stellglied die Übertragungsfunktionen [mm]G_{Mess}(s)[/mm] =
> [mm]G_{Stell}(s)[/mm] = 1 aufweisen.
>  Hallo,
>  

hallo,

> leider fehlt mir ein bißchen die Idee wie ich die Aufgabe
> lösen kann.
> Wenn ich mit dem P-Regler anfange, weiß ich, dass die
> Übertragungsfkt. des P-Reglers [mm]G_R(s)=K_p[/mm] ist. Die des
> offenen Kreises wäre dann: [mm]G_{off}(s)=G_S(s)*G_R(s)[/mm] und
> die des geschlossenen somit:
> [mm]G_{gesch}(s)=\bruch{G_{off}(s)}{G_{off}(s)+1}[/mm]
>  Aber leider weiß ich jetzt schon nicht mehr weiter, ich
> weiß nicht, ob ich die offene oder geschlossene brauche.

bei dem offenen regelkreis hättest du doch gar keine regeldifferenz, da die rückführung fehlt.
bestimme H(s) (G(s)/s) und transformiere dies in den zeitbereich.. dort gilt dann w(t)-x(t)=e(t) wobei x(t) die sprungantwort von oben ist

> Und muss ich diese dann zurücktransformieren in den
> Laplace-Bereich? Und wo ist der Zusammenhang zur
> Regeldifferenz?
>  
> Ich wäre für Hilfe, die mich in die richtige Richtung
> schubst dankbar!
>  
> Vielen Dank,
>  Zweiti
>  
> P.S. Ich habe diese Frage in keinem anderen Forum gestellt

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]