www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Verknüpfungen
Verknüpfungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Sa 07.11.2009
Autor: mova

Aufgabe
Für i [mm] \in [/mm] {1,2,3} seien Abbildungen [mm] f_{i}: \IN \to \IN [/mm] wie folgt definiert:

[mm] f_{1} [/mm] (n):= 3n+2

[mm] f_{2} (n):=\begin{cases} \bruch{n+1}{2}, & \mbox : n=1,3,5,... \\ \bruch{n}{2}, & \mbox : n= 2,4,6,... \end{cases} [/mm]

[mm] f_{3} (n):=\begin{cases} n+1, & \mbox : n= 1,3,5,... \\ n-1, & \mbox : n= 2,4,6,... \end{cases} [/mm]

Untersuche, ob die Abbildungen [mm] g_{i}: \IN \to \IN [/mm] mit [mm] g_{i} \circ f_{i}=id [/mm] oder [mm] h_{i}: \IN \to \IN [/mm] mit [mm] f_{i} \circ h_{i}=id [/mm] gibt.

Hat hier jemand eine Lösung für mich?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verknüpfungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Sa 07.11.2009
Autor: T_sleeper

Hallo,

> Untersuche, ob die Abbildungen [mm]g_{i}: \IN \to \IN[/mm] mit [mm]g_{i} \circ f_{i}=id[/mm]
> oder [mm]h_{i}: \IN \to \IN[/mm] mit [mm]f_{i} \circ h_{i}=id[/mm] gibt.
>  Hat hier jemand eine Lösung für mich?
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Lösungen gibt es hier nicht einfach so umsonst. Du solltest wenigstens einen Ansatz reinstellen und präziser Fragen.
Ich werfe hier einfach mal so Begriffe wie Surjektivität und Bijektivität rein, was du damit anfängst, bleibt erstmal dir überlassen.

Gruß Sleeper

Bezug
        
Bezug
Verknüpfungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 So 08.11.2009
Autor: mova

ich habe bisher herausgefunden,dass [mm] f_{1} [/mm] injektiv und nicht surjektiv ist, [mm] f_{2} [/mm] ist nicht injektiv und dafür surjektiv und [mm] f_{3} [/mm] ist bijektiv...

ich weiß aber bisher noch nicht was ich damit anfangen soll?wie komme ich jetzt bei der aufgabe weiter?

außerdem stellt sich mir die frage, von was die id ist? (sonst hatte man immer [mm] id_{M} [/mm] oder ähnliches)

lg mova

Bezug
                
Bezug
Verknüpfungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 So 08.11.2009
Autor: T_sleeper


> ich habe bisher herausgefunden,dass [mm]f_{1}[/mm] injektiv und
> nicht surjektiv ist, [mm]f_{2}[/mm] ist nicht injektiv und dafür
> surjektiv und [mm]f_{3}[/mm] ist bijektiv...
>  
> ich weiß aber bisher noch nicht was ich damit anfangen
> soll?wie komme ich jetzt bei der aufgabe weiter?

Eine Abbildung f: [mm] A\rightarrow [/mm] B ist genau dann surjektiv, wenn f eine rechte inverse hat, d.h. [mm] \exists g:B\rightarrow [/mm] A mit [mm] f\circ g=Id_B. [/mm]

Im Falle der Injektivität von f ist dies äquivalent dazu, dass f ein linke Inverse besitzt.

Wenn etwas bijektiv ist, dann gibt es immer eine Abbildung g, sodass [mm] f\circ [/mm] g=Id gilt. g ist dann die Umkehrfunktion.

Das heißt also, wenn du diese Eigenschaften zeigst, weißt du, dass es entsprechende Abbildungen gibt.

>  
> außerdem stellt sich mir die frage, von was die id ist?
> (sonst hatte man immer [mm]id_{M}[/mm] oder ähnliches)

Es reicht hier aus nur id zu schreiben, da wir uns nur in den natürlichen Zahlen bewegen, also kannst du auch schreiben [mm] id_{\mathbb{N}}. [/mm]

>  
> lg mova

Gruß Sleeper


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]