www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Verkettung von Funktionen
Verkettung von Funktionen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:11 Mi 04.11.2009
Autor: coucou

Aufgabe
Der Graph der Funktion f berührt die x-Achse im Punkt P (2/0).
a) Zeigen Sie, dass dann auch der Graph der Funktion g mit g (x) = x mal f(x) die x-Achse im Punkt P berührt.
b) Wenn P ein Hochpunkt des Graphen von f ist mit f ´´ (2) <0, ist dann P auch ein Hochpunkt des Graphen von g?
c) Was ändert sich an a) bzw. b, wenn der Berührpunkt P die Koordination (-2/0) hat?

Hallo!

Ich bräuchte dringend Hilfe, bin grad ziemlich am Verzweifeln.
Wie soll ich denn wissen, ob g und f beide den Punkt berühren, wenn ich keine Funktion für f hab. Und sowieso soll ich da jetzt irgendwas mit Ableitungen machen?!
Ich hab ehrlich keine Ahnung! Kann mir bitte jemand einen Tipp oder Lösungsansatz geben?

Danke!

        
Bezug
Verkettung von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Mi 04.11.2009
Autor: fred97

Zunächst allgemein: ist [mm] P(x_0|0) [/mm] ein Punkt der x-Achse und h eine (differenzierbare) Funktion, so gilt:

    (*)       h berührt die x-Achse in P [mm] \gdw h(x_0) [/mm] = [mm] h'(x_0) [/mm] =0

Zu a) Wegen (*) gilt: $f(2) = f'(2) = 0$  (hier ist [mm] x_0 [/mm] =2)

Es ist $g(x) = xf(x)$

Kannst Du nun die Frage beantworten ? Was mußt Du berechnen ?

Zu b) Mit dem Ergebnis von a) mußt Du schauen wie $g''(2)$ ausfällt.

c) solltest Du nun selbst hinkriegen

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]