www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Verkettung
Verkettung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung : Frage
Status: (Frage) beantwortet Status 
Datum: 11:00 Mo 20.06.2005
Autor: kimnhi

Hi!
Ich wollte nur mal wissen, ob meine Verkettung richtig ist?
Also die Aufgabe lautet:

[mm] f(x)=x^2+3x-4 [/mm] und [mm] g(x)=3x^2-4x [/mm]

a.Bilde die Verkettung f [mm] \circ [/mm] g
b.Bilde die Verkettung g [mm] \circ [/mm] f

Ich habe bei a.) nun folgendes raus:

f(g(x))= [mm] (3x^2-4x)^2 [/mm] + [mm] 3(3x^2-4x)-4 [/mm]
         = [mm] 9x^4-24x^3+16x^2+9x^2-12x-4 [/mm]
         = [mm] 9x^4-24x^3+25x^2-12x-4 [/mm]



[mm] b)g(f(x))=3(x^2+3x-4)^2 [/mm] - [mm] 4(x^2+3x-4) [/mm]
             [mm] =3(x^4+9x^2+16)-4(x^2+3x-4) [/mm]
             [mm] =3x^4+27^2+16-4x^2+12x-4 [/mm]
             [mm] =3x^4+23x^4+12 [/mm]


        
Bezug
Verkettung : Nicht ganz
Status: (Antwort) fertig Status 
Datum: 11:23 Mo 20.06.2005
Autor: Herby

Hi Kimnhi,

> Hi!
>  Ich wollte nur mal wissen, ob meine Verkettung richtig
> ist?
>  Also die Aufgabe lautet:
>  
> [mm]f(x)=x^2+3x-4[/mm] und [mm]g(x)=3x^2-4x[/mm]
>  
> a.Bilde die Verkettung f [mm]\circ[/mm] g
>  b.Bilde die Verkettung g [mm]\circ[/mm] f
>  
> Ich habe bei a.) nun folgendes raus:
>  
> f(g(x))= [mm](3x^2-4x)^2[/mm] + [mm]3(3x^2-4x)-4[/mm]
>           = [mm]9x^4-24x^3+16x^2+9x^2-12x-4[/mm]
>           = [mm]9x^4-24x^3+25x^2-12x-4[/mm]

[daumenhoch]


> [mm]b)g(f(x))=3(x^2+3x-4)^2[/mm] - [mm]4(x^2+3x-4)[/mm]
>               [mm]=3(x^4+9x^2+16)-4(x^2+3x-4)[/mm]
>               [mm]=3x^4+27^2+16-4x^2+12x-4[/mm]
>               [mm]=3x^4+23x^4+12[/mm]

Hier stimmt was nicht!  Wenn du einen Klammerausdruck quadrierst, dann musst du jeden Summanden mit jedem multiplizieren, soll heißen, es müssen auch x³ und x auftauchen (was bei dir nicht passiert).

Bei drei Summanden in der Klammer hast du also neun Multiplikationen durchzuführen.

Probier's nochmal.


[winken]

Liebe Grüße
Herby

ach so: Aber das Vorgehen ist richtig!    


Bezug
        
Bezug
Verkettung : weitere Hilfe
Status: (Antwort) fertig Status 
Datum: 11:47 Mo 20.06.2005
Autor: Zwerglein

Hi, kimnhi,

> [mm]b)g(f(x))=3(x^2+3x-4)^2[/mm] - [mm]4(x^2+3x-4)[/mm]

Dass Du hier ein "Trinom" vorliegen hast, bei dem Du die entsprechende Formel verwenden musst, hat Dir ja Herby bereits verklickert.
Aber auch im weiteren Verlauf Deiner Rechnung treten Fehler auf, die Du in Zukunft vermeiden solltest:

>               [mm]=3(x^4+9x^2+16)-4(x^2+3x-4)[/mm]
>               [mm]=3x^4+27x^2+16-4x^2+12x-4[/mm]

Rechenfehler im 1. Teil: [mm] 3x^4+27x^2+48 [/mm] wäre richtig!
Vorzeichenfehler und Rechenfehler im 2. Teil! Es müsste [mm] -4x^{2} [/mm] - 12x + 16 heißen!

>               [mm]=3x^4+23x^4+12[/mm]

Wie hast Du denn das gerechnet?
[mm] 27x^{2} [/mm] - [mm] 4x^{2} [/mm] = [mm] 23x^{4} [/mm] ???  
und: Wo bleibt der Summand 12x ???

Mehr Konzentration bitte!

Übrigens hier eine Alternative, die auf "Ausklammern" beruht:

[mm] 3(x^2+3x-4)^2 [/mm] - [mm] 4(x^2+3x-4) [/mm]

= [mm] (x^2+3x-4)*[3(x^2+3x-4) [/mm] - 4]

= [mm] (x^2+3x-4)*[3x^2+9x-12 [/mm] - 4]

= [mm] (x^2+3x-4)*[3x^2+9x-16] [/mm]

= [mm] 3x^{4} [/mm] + [mm] 9x^{3} [/mm] - [mm] 16x^{2} [/mm] + [mm] 9x^{3} [/mm] + [mm] 27x^{2} [/mm] - 48x - [mm] 12x^{2} [/mm] - 36x + 64

= [mm] 3x^{4} [/mm] + [mm] 18x^{3} [/mm] - [mm] x^{2} [/mm] - 84x + 64

(Nachrechnen!!)


=


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]