www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Verhalten von Funktionen
Verhalten von Funktionen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verhalten von Funktionen: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 13:50 Mo 30.10.2006
Autor: Kristof

Aufgabe
Gegeben ist die Funktion f. Ermitteln Sie die Definitionsmeng, die Nullstellen und die Polstellen und geben sie das Verhalten von f in der Umgebung einer Polstelle an. Notieren sie gegebenenfalls die gemeinsamen Punkte des Graphen von f mt den Koordinatenachsen sowie die Gleichungen der senkrechten Asymptoten.

a.) f (x) = [mm] \bruch{x}{x-3} [/mm]
b.) f (x) = [mm] \bruch{x}{x^2-4} [/mm]
c.) f (x) = [mm] \bruch{x^2-x}{x^2-x-6} [/mm]

Hallo,
Fange ich gleich mal an. Den größten Teil der Aufgabe habe ich verstanden, und ihn auch gemacht. Habe mir jede Aufgabe Vorgenommen und habe zu erst folgenden Aufgabenteil bei den Aufgaben gemacht :

Zuerst noch eine Frage.
Definitionslücken sind doch Polstellen oder? Bin jedenfalls bei der bearbeitung der Aufgabe davon ausgegangen ;)

Gegeben ist die Funktion f. Ermitteln Sie die Definitionsmeng, die Nullstellen und die Polstellen und geben sie das Verhalten von f in der Umgebung einer Polstelle an.

Zu a.)

D = [mm] \IR \setminus \{3\} [/mm]

Definiionslücke (Polstelle) bie x = 3, da Nenner sonst 0 werden würde.
Nullstelle der Funkton bei x = 0

Verhalten der Funktion an der Polstelle :

[mm] \limes_{x\rightarrow 3} [/mm] für x < 3 = [mm] \to [/mm] - [mm] \infty [/mm] (habe hier den Wert 2,999 in die Funktion eingesetzt.)
[mm] \limes_{x\rightarrow 3} [/mm] für x > 3 = [mm] \to [/mm] + [mm] \infty [/mm] (habe hier den Wert 3,001 in die Funktion eingesetzt.)

Daraus folgt : An den Polstellen der Funktion f (x) tritt ein Vorzeichenwechsel auf.

zu b.)



D = [mm] \IR \setminus \{2;-2\} [/mm]


Definitionslücken (Polstellen) bei x = 2 sowie x = -2 , da Nenner sonst 0 werden würde.
Nullstelle der Funkton bei x = 0

[mm] \limes_{x\rightarrow -2} [/mm] für x < -2 = [mm] \to [/mm] - [mm] \infty [/mm] (habe hier den Wert -2,001 in die Funktion eingesetzt.)
[mm] \limes_{x\rightarrow -2} [/mm] für x > -2 = [mm] \to [/mm] + [mm] \infty [/mm] (habe hier den Wert -1,999 in die Funktion eingesetzt.)



[mm] \limes_{x\rightarrow 2} [/mm] für x < 2 = [mm] \to [/mm] - [mm] \infty [/mm] (habe hier den Wert 1,999 in die Funktion eingesetzt.)
[mm] \limes_{x\rightarrow 2} [/mm] für x > 2 = [mm] \to [/mm] + [mm] \infty [/mm] (habe hier den Wert 2,001 in die Funktion eingesetzt.)

Auch hier kann man erkennen, das die Funktion an den Polstellen 2 u. -2 einen Vorzeichenwechsel macht.


zu c.)

D = [mm] \IR \setminus \{3;-2\} [/mm]

Definitionslücken (Polstellen) bei x = 3 und x= -2, da Nenner sonst 0 werden würde.
Nullstellen der Funktion bei x = 0 und x = 1

Verhalten der Funktion an der Polstelle :

[mm] \limes_{x\rightarrow 3} [/mm] für x < 3 = [mm] \to [/mm] - [mm] \infty [/mm] (habe hier den Wert 2,999 in die Funktion eingesetzt.)
[mm] \limes_{x\rightarrow 3} [/mm] für x > 3 = [mm] \to [/mm] + [mm] \infty [/mm] (habe hier den Wert 3,001 in die Funktion eingesetzt.)

[mm] \limes_{x\rightarrow -2} [/mm] für x < -2 = [mm] \to [/mm] + [mm] \infty [/mm] (habe hier den Wert -2,001 in die Funktion eingesetzt.)
[mm] \limes_{x\rightarrow -2} [/mm] für x > -2 = [mm] \to [/mm] - [mm] \infty [/mm] (habe hier den Wert -1,999 in die Funktion eingesetzt.)

Hier tritt auch ein VZW an den Polstellen auf.

Ja, das war's was ich zu der Aufgabe gemacht habe.
Das andere habe ich nicht verstanden. Also den folgenden Aufgabenteil :

Notieren sie gegebenenfalls die gemeinsamen Punkte des Graphen von f mt den Koordinatenachsen sowie die Gleichungen der senkrechten Asymptoten.

Weiß wirklich nicht was ich machen soll. Weiß nichtmal was senkrechte Asymptoten sein sollen :(
Vielleicht kann ja jemand für mich ein Beispiel machen und es mir erklären, wäre jedenfalls sehr nett.

MfG
Kristof

        
Bezug
Verhalten von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Mo 30.10.2006
Autor: Teufel

Hi!

  

> Notieren sie gegebenenfalls die gemeinsamen Punkte des
> Graphen von f mt den Koordinatenachsen sowie die
> Gleichungen der senkrechten Asymptoten.

Die gemeinsamen Punkte mit den Koordinatenachsen sollten die Schnittpunkte mit x- und y-Achse sein!

Und Asymptoten sind geraden, an denen sich die Grafen annähren. z.B. die Funktion f(x)=tan(x) hat auch senkrechte Asymptoten, nämlich bei [mm] x=\bruch{1}{2}\pi, x=\bruch{3}{2}\pi [/mm] u.s.w.

Und bei dir sind auch nur die senkrechten gesucht (gibt auch noch "schiefe" und waagerechte).
Und diese haben dann einfach nur die Gleichung x=a, wobei a die Polstelle ist :)
Die Gerade ist parallel zur y-Achse und an der Polstelle geht der Graf ja unendlich dicht an diese Gerade ran, wie beschrieben.

Bezug
                
Bezug
Verhalten von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Di 31.10.2006
Autor: Kristof


> Hi!
>  
>
> > Notieren sie gegebenenfalls die gemeinsamen Punkte des
> > Graphen von f mt den Koordinatenachsen sowie die
> > Gleichungen der senkrechten Asymptoten.
>
> Die gemeinsamen Punkte mit den Koordinatenachsen sollten
> die Schnittpunkte mit x- und y-Achse sein!

Also bei a und b müsste das im Punkt (0|0) der Fall sein oder?
Bei c.) bin ich mir da nicht sicher?
Kann man das irgendwie errechnen? Oder nur vom Graphen ablesen?

  

> Und Asymptoten sind geraden, an denen sich die Grafen
> annähren. z.B. die Funktion f(x)=tan(x) hat auch senkrechte
> Asymptoten, nämlich bei [mm]x=\bruch{1}{2}\pi, x=\bruch{3}{2}\pi[/mm]
> u.s.w.
>  
> Und bei dir sind auch nur die senkrechten gesucht (gibt
> auch noch "schiefe" und waagerechte).
>  Und diese haben dann einfach nur die Gleichung x=a, wobei
> a die Polstelle ist :)
>  Die Gerade ist parallel zur y-Achse und an der Polstelle
> geht der Graf ja unendlich dicht an diese Gerade ran, wie
> beschrieben.

Hmmm,
Also dann müssten ja die Asymptoten sein :

a.) x = 3
b.) [mm] x_1 [/mm] = 2 u. [mm] x_2 [/mm] = -2
c.) [mm] x_1 [/mm] = 3 u. [mm] x_2 [/mm] = -2

Aber was meinen die denn genau mit Gleichung der Asymptoten?

Dankeschön
MfG
Kristof

Bezug
                        
Bezug
Verhalten von Funktionen: MatheBank!
Status: (Antwort) fertig Status 
Datum: 19:36 Di 31.10.2006
Autor: informix

Hallo Kristof,

> Also bei a und b müsste das im Punkt (0|0) der Fall sein
> oder?
>  Bei c.) bin ich mir da nicht sicher?
>  Kann man das irgendwie errechnen? Oder nur vom Graphen
> ablesen?
>
>
> > Und Asymptoten sind geraden, an denen sich die Grafen
> > annähren. z.B. die Funktion f(x)=tan(x) hat auch senkrechte
> > Asymptoten, nämlich bei [mm]x=\bruch{1}{2}\pi, x=\bruch{3}{2}\pi[/mm]
> > u.s.w.
>  >  
> > Und bei dir sind auch nur die senkrechten gesucht (gibt
> > auch noch "schiefe" und waagerechte).
>  >  Und diese haben dann einfach nur die Gleichung x=a,
> wobei
> > a die Polstelle ist :)
>  >  Die Gerade ist parallel zur y-Achse und an der
> Polstelle
> > geht der Graf ja unendlich dicht an diese Gerade ran, wie
> > beschrieben.
>
> Hmmm,
>  Also dann müssten ja die Asymptoten sein :
>
> a.) x = 3
>  b.) [mm]x_1[/mm] = 2 u. [mm]x_2[/mm] = -2
>  c.) [mm]x_1[/mm] = 3 u. [mm]x_2[/mm] = -2
>

[daumenhoch]

> Aber was meinen die denn genau mit Gleichung der
> Asymptoten?

Mach aus den obigen Punkten auf der x-Achse einfach senkrechte Geraden: x=3

[guckstduhier] MBAsymptoten in unserer MBWissensbank


Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]