Vereinigung und lin Hülle < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:52 So 07.01.2007 | Autor: | Speyer |
Aufgabe | Sei K = Körper. Weiter seien U,V Teilräume von [mm] K^{3}, [/mm] die verschieden sind von {0}. Zeigen Sie, dass U [mm] \cap [/mm] V [mm] \not= [/mm] {0}, wenn weder U noch V die lineare Hülle eines einzigen Elements ist.
(( DIMENSIONS-FORMEL IST NICHT ERLAUBT )) |
Wikipedia: "die lineare Hülle ist die Menge aller endlichen Linearkombinationen der [mm] v_{i}"
[/mm]
Als Tips haben wir bekommen:
U,V < [mm] K^{3}, [/mm] U [mm] \not= [/mm] {0} [mm] \not= [/mm] V, [mm] \forall [/mm] v [mm] \in K^{3}: [/mm] U [mm] \not= \mathcal{L}(v), [/mm] V [mm] \not= \mathcal{L}(v)
[/mm]
=> U,V mind. Lineare Hülle von 2 Vektoren
z.Z.: U [mm] \cap [/mm] V [mm] \not= [/mm] {0}
Soll ich jetzt beweisen, dass, wenn U,V jeweils mindestens die Lineare Hülle von 2 Vektoren bilden, dass dann der Durchschnitt von beiden [mm] \not= [/mm] {0} ist? Wenn ja, wieso? Und vorallem: Wie?
Bin total ratlos...
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:17 So 07.01.2007 | Autor: | DaMenge |
Hi,
also deine Vorraussetzungen sind doch, dass beide Unterräume nicht nur {0} sein sollen (also nicht Dimension 0 haben) und dass beide nicht nur von einem Vektor aufgespannt werden (also nicht Dimension 1 haben), dann bleibt für jeden der beiden Räume nur, dass er mindestens Dimension 2 hat.
Du kannst also in jedem der beiden Räume zwei linear unabhängie Vektoren finden...
angenommen der Schnitt der Räume wäre gleich {0}, dann musst du jetzt noch zeigen, dass diese vier Vektoren zusammen auch noch linear unabhängig wären (was aber ein Widerspruch darstellt, denn dann wäre U+V aus Dimensionsgründen nicht mehr Teilraum des [mm] K^3 [/mm] (was aber immer der Fall wäre, wenn U und V UVR vom [mm] K^3 [/mm] sind))
so - was würde passieren, wenn man die vier Vektoren zusammen nimmt und feststellen würde, dass sie linear abhängig sind?
Was würde das für den Schnitt der Räume bedeuten?
viele Grüße
DaMenge
|
|
|
|