www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Vereinigung l.u. Eigenvektoren
Vereinigung l.u. Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinigung l.u. Eigenvektoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:59 Do 21.05.2015
Autor: Ne0the0ne

Aufgabe
Sei ein K-Vektorraum und f [mm] \in End_K(V). [/mm]
Seien [mm] \lambda_1,...,\lambda_r \in [/mm] K paarweise verschiedene Eigenwerte von f, sowie [mm] B_i [/mm] jeweils eine Menge von linear unabhängigen Eigenvektoren zum Eigenwert [mm] \lambda_i. [/mm]
Zeigen Sie, dass dann auch [mm] B:=B_1 \cup [/mm] ... [mm] \cup B_r [/mm] linear unabhängig ist.

Grüßt euch,
ich habe große Probleme mit dem Schreiben des Beweises und einige Fragen:

Die Aussage behauptet nichts weiteres, als das die verschiedene Eigenräume mit ihren Eigenvektoren zu ihren Eigenwerten jeweils voneinander linear unabhängig sind - stimmt das so?

Wenn ja, wie fange ich am besten an mit dem Beweis?
Ich habe schon an einer Aufgabe erkannt, dass die Aussage wahr ist, bloß habe ich Probleme, dass eben zu beweisen.

Viele Grüße,
Ne0the0ne

        
Bezug
Vereinigung l.u. Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Do 21.05.2015
Autor: fred97


> Sei ein K-Vektorraum und f [mm]\in End_K(V).[/mm]
>  Seien
> [mm]\lambda_1,...,\lambda_r \in[/mm] K paarweise verschiedene
> Eigenwerte von f, sowie [mm]B_i[/mm] jeweils eine Menge von linear
> unabhängigen Eigenvektoren zum Eigenwert [mm]\lambda_i.[/mm]
>  Zeigen Sie, dass dann auch [mm]B:=B_1 \cup[/mm] ... [mm]\cup B_r[/mm] linear
> unabhängig ist.
>  Grüßt euch,
>  ich habe große Probleme mit dem Schreiben des Beweises
> und einige Fragen:
>  
> Die Aussage behauptet nichts weiteres, als das die
> verschiedene Eigenräume mit ihren Eigenvektoren zu ihren
> Eigenwerten jeweils voneinander linear unabhängig sind -
> stimmt das so?

Na ja, das ist sehr verschwurbelt ausgedrückt. Vielleicht meinst Du das Richtige.

Zu zeigen ist: sind $ [mm] \lambda_1,...,\lambda_r \in [/mm]  K $ paarweise verschiedene Eigenwerte von f und sind [mm] x_1,...,x_r [/mm] zugehörige Eigenvektoren, also [mm] $f(x_j)=\lambda_j x_j$ [/mm] , so sind [mm] x_1,...,x_r [/mm] linear unabhängig.

Tipp: Induktion nach r.

FRED

>  
> Wenn ja, wie fange ich am besten an mit dem Beweis?
>  Ich habe schon an einer Aufgabe erkannt, dass die Aussage
> wahr ist, bloß habe ich Probleme, dass eben zu beweisen.
>  
> Viele Grüße,
>  Ne0the0ne


Bezug
                
Bezug
Vereinigung l.u. Eigenvektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Do 21.05.2015
Autor: tobit09

Hallo zusammen!


> Zu zeigen ist: sind [mm]\lambda_1,...,\lambda_r \in K[/mm]
> paarweise verschiedene Eigenwerte von f und sind
> [mm]x_1,...,x_r[/mm] zugehörige Eigenvektoren, also
> [mm]f(x_j)=\lambda_j x_j[/mm] , so sind [mm]x_1,...,x_r[/mm] linear
> unabhängig.

Die Aussage aus der Aufgabenstellung ist etwas allgemeiner: In den dortigen Mengen [mm] $B_j$ [/mm] können jeweils mehrere Eigenvektoren zum gleichen Eigenwert [mm] $\lambda_j$ [/mm] sein.


> Tipp: Induktion nach r.

Dieser Tipp ist aber auch für die allgemeinere Aufgabenstellung passend.


Viele Grüße
Tobias

Bezug
                
Bezug
Vereinigung l.u. Eigenvektoren: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:03 Fr 22.05.2015
Autor: Ne0the0ne

Vielen lieben Dank für euren Tipp, er hat mir sehr geholfen.
Ich habe den Induktionsbeweis geschrieben - würdet ihr den mal kurz auf Tauglichkeit prüfen?

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                        
Bezug
Vereinigung l.u. Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Fr 22.05.2015
Autor: fred97


> Vielen lieben Dank für euren Tipp, er hat mir sehr
> geholfen.
>  Ich habe den Induktionsbeweis geschrieben - würdet ihr
> den mal kurz auf Tauglichkeit prüfen?

Hab ich gemacht ! Dein Beweis ist leider durchgefallen. Leider hast Du Deinen Beweis als Bild eingestellt. So kann man nichts kommentieren. Ich selbst habe keine Lust alles abzuschreiben. Stelle also Deinen "Beweis" so ein, dass man ihn kommentieren kann. Dann sage ich Dir gerne , was alles nicht in Ordnung ist.

FRED

>  
> [Dateianhang nicht öffentlich]


Bezug
                                
Bezug
Vereinigung l.u. Eigenvektoren: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:58 Fr 22.05.2015
Autor: Ne0the0ne

Hier der gewünschte Quelltext:

Induktionsanfang:
[mm] f(x_1)=\lambda_1 x_1, f(x_2)=\lambda_2 x_2. [/mm]

[mm] \summe_{j=1}^{2}a_jf(x_j)=0, [/mm]
also [mm] a_1f(x_1)+a_2f(x_2)=0, [/mm]
also [mm] a_1\lambda_1x_1+a_2\lambda_2x_2, [/mm]
also [mm] a_1\lambda_1x_1=-a_2\lambda_2x_2 [/mm]

[mm] a_1=-\bruch{a_2\lambda_2x_2}{\lambda_1x_1}, [/mm] für [mm] a_2=0 [/mm] ist [mm] a_1=0 [/mm] bzw.
[mm] a_2=-\bruch{a_1\lambda_1x_1}{\lambda_2x_2}, [/mm] für [mm] a_1=0 [/mm] ist [mm] a_2=0, [/mm]
also [mm] 0=0(fx_1)+0f(x_2), [/mm]
also 0=0, womit [mm] x_1,x_2 [/mm] linear unabhängig sind.

Induktionsbehauptung
[mm] \summe_{j=1}^{r}a_jf(x_j)=a_1f(x_1)+...+a_rf(x_r)=0 [/mm]

Induktionsschritt
[mm] \summe_{j=1}^{r+1}a_jf(x_j)=0, [/mm]
also [mm] \summe_{j=1}^{r}a_jf(x_j)+a_r_+_1f(x_r_+_1)=0, [/mm]
also [mm] 0+a_r_+_1f(x_r_+_1)=0 [/mm] mit [mm] a_r_+_1=0, [/mm]
also [mm] \summe_{j=1}^{r+1}a_jf(x_j)=a_1f(x_1)+...+a_r_+_1f(x_r_+_1)=0. [/mm]

Bezug
                                        
Bezug
Vereinigung l.u. Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Fr 22.05.2015
Autor: tobit09

Hallo Ne0the0ne!


> Hier der gewünschte Quelltext:

Danke. :-)


Du möchtest nun offenbar nicht die Aussage aus der Aufgabenstellung, sondern die von Fred genannte Aussage zeigen:

> Zu zeigen ist: sind $ [mm] \lambda_1,...,\lambda_r \in [/mm]  K $ paarweise verschiedene Eigenwerte von f und sind $ [mm] x_1,...,x_r [/mm] $ zugehörige Eigenvektoren, also

[mm] $x_1,\ldots,x_r\not=0$ [/mm] und

> $ [mm] f(x_j)=\lambda_j x_j [/mm] $ , so sind $ [mm] x_1,...,x_r [/mm] $ linear unabhängig.

Diese Aussage möchtest du nun per Induktion nach r nachweisen.


> Induktionsanfang:

Den Induktionsanfang würde ich mit $r=0$ durchführen.

Du möchtest ihn offenbar mit $r=2$ durchführen.
Das ist völlig ok, wenn du die Behauptung nur für [mm] $r\ge [/mm] 2$ benötigst.


>  [mm]f(x_1)=\lambda_1 x_1, f(x_2)=\lambda_2 x_2.[/mm]

Ja, das gilt im Falle $r=2$.


> [mm]\summe_{j=1}^{2}a_jf(x_j)=0,[/mm]

Was meinst du mit [mm] $a_1$ [/mm] und [mm] $a_2$? [/mm]


>  also [mm]a_1f(x_1)+a_2f(x_2)=0,[/mm]

Folgerichtig.


>  also [mm]a_1\lambda_1x_1+a_2\lambda_2x_2,[/mm]

Folgerichtig.


>  also [mm]a_1\lambda_1x_1=-a_2\lambda_2x_2[/mm]

Folgerichtig.


> [mm]a_1=-\bruch{a_2\lambda_2x_2}{\lambda_1x_1},[/mm]

Rechts vom Gleichheitszeichen steht ein Bruch von Vektoren.
Eine Division von Vektoren ist (in beliebigen Vektorräumen) jedoch gar nicht definiert.


> für [mm]a_2=0[/mm] ist
> [mm]a_1=0[/mm] bzw.
>  [mm]a_2=-\bruch{a_1\lambda_1x_1}{\lambda_2x_2},[/mm] für [mm]a_1=0[/mm] ist
> [mm]a_2=0,[/mm]

Mit deiner fehlerhaften Argumentation glaubst du also gezeigt zu haben:
Wenn einer der beiden Skalare [mm] $a_1$ [/mm] und [mm] $a_2$ [/mm] den Wert 0 hat, dann auch der andere der beiden Skalare.

Du hast nicht gezeigt, dass [mm] $a_1=a_2=0$ [/mm] gilt.


>  also [mm]0=0(fx_1)+0f(x_2),[/mm]

Das ist zweifellos eine korrekte Gleichheit (völlig unabhängig von den bisherigen Überlegungen).

>  also 0=0,

Auch diese Gleichheit stimmt sicherlich (wieder völlig unabhängig von den bisherigen Überlegungen).


> womit [mm]x_1,x_2[/mm] linear unabhängig sind.

Das ist zu zeigen.


Zu zeigen ist also:

Für ALLE [mm] $a_1,a_2\in [/mm] K$ mit [mm] $a_1x_1+a_2x_2=0$ [/mm] gilt bereits [mm] $a_1=a_2=0$. [/mm]

Seien also [mm] $a_1,a_2\in [/mm] K$ mit

(1)      [mm] $a_1x_1+a_2x_2=0$ [/mm]

beliebig vorgegeben.
Zu zeigen ist [mm] $a_1=a_2=0$. [/mm]

Aus (1) folgt durch Anwendung von f

(2)        [mm] $f(a_1x_1+a_2x_2)=f(0)$. [/mm]

Indem wir das [mm] "$\lambda_2$-fache [/mm] von (1)" von (2) subtrahieren, erhalten wir

        [mm] $f(a_1x_1+a_2x_2)-\lambda_2*(a_1x_1+a_2x_2)=f(0)-\lambda_2*0$. [/mm]

Rechne nun die beiden Seiten dieser Gleichheit aus.


> Induktionsbehauptung

(Meinst du Induktionsvoraussetzung?)

>  [mm]\summe_{j=1}^{r}a_jf(x_j)=a_1f(x_1)+...+a_rf(x_r)=0[/mm]

Was meinst du mit [mm] $a_1,\ldots,a_r$? [/mm]

Ich erkenne keinen Zusammenhang zur linearen Unabhängigkeit von [mm] $x_1,\ldots,x_r$. [/mm]


> Induktionsschritt
>  [mm]\summe_{j=1}^{r+1}a_jf(x_j)=0,[/mm]

Wieder die Frage: Was sind [mm] $a_1,\ldots,a_{r+1}$? [/mm]

(Soll [mm] $\summe_{j=1}^{r+1}a_jf(x_j)=0$ [/mm] eine Annahme oder eine Schlussfolgerung sein?)

>  also [mm]\summe_{j=1}^{r}a_jf(x_j)+a_r_+_1f(x_r_+_1)=0,[/mm]

Folgerichtig.


>  also [mm]0+a_r_+_1f(x_r_+_1)=0[/mm]

Wenn deine [mm] $a_1,\ldots,a_r$ [/mm] die Eigenschaft [mm] $a_1f(x_1)+...+a_rf(x_r)=0$ [/mm] haben, ist das folgerichtig.


> mit [mm]a_r_+_1=0,[/mm]

Warum das?
[mm] $f(x_{r+1})$ [/mm] könnte der Nullvektor unseres Vektorraumes sein.
Dann folgt aus [mm] $a_{r+1}f(x_{r+1})=0$ [/mm] für beliebiges [mm] $a_{r+1}\in [/mm] K$ keineswegs notwendigerweise [mm] $a_{r+1}=0$. [/mm]


>  also
> [mm]\summe_{j=1}^{r+1}a_jf(x_j)=a_1f(x_1)+...+a_r_+_1f(x_r_+_1)=0.[/mm]

Mit dieser Annahme (?) warst du doch oben gestartet???


Zum Induktionsschritt von r nach r+1:

Wir nehmen an, dass Freds Aussage für eine feste natürliche Zahl $r$ gilt.
Zeigen müssen wir nun Folgendes:

Sind $ [mm] \lambda_1,...,\lambda_r,\lambda_{r+1}\in [/mm]  K $ paarweise verschiedene Eigenwerte von f und sind $ [mm] x_1,...,x_r,x_{r+1} [/mm] $ zugehörige Eigenvektoren, so sind $ [mm] x_1,...,x_r,x_{r+1}$ [/mm] linear unabhängig.

Seien also [mm] $\lambda_1,\ldots,\lambda_r,\lambda_{r+1}\in [/mm] K$ paarweise verschiedene Eigenwerte von f und [mm] $x_1,\ldots,x_r,x_{r+1}$ [/mm] zugehörige Eigenvektoren.
Zu zeigen ist die lineare Unabhängigkeit von [mm] $x_1,\ldots,x_r,x_{r+1}$. [/mm]

Zu zeigen ist also:

Sind [mm] $a_1,\ldots,a_{r+1}\in [/mm] K$ mit [mm] $a_1x_1+\ldots+a_rx_r+a_{r+1}x_{r+1}=0$, [/mm] so gilt schon [mm] $a_1=\ldots,a_r=a_{r+1}=0$. [/mm]

Seien also [mm] $a_1,\ldots,a_{r+1}\in [/mm] K$ mit

       [mm] $a_1x_1+\ldots+a_rx_r+a_{r+1}x_{r+1}=0$ [/mm]

beliebig vorgegeben.
Wir müssen nun [mm] $a_1=\ldots=a_r=a_{r+1}=0$ [/mm] zeigen.

Gehe dazu ähnlich wie von mir für den Induktionsanfang vorgeschlagen vor.

Gemäß Induktionsvoraussetzung wissen wir schon, dass [mm] $x_1,\ldots,x_r$ [/mm] linear unabhängig sind.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]