www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Vereinigung kart. Produkte
Vereinigung kart. Produkte < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinigung kart. Produkte: Idee
Status: (Frage) beantwortet Status 
Datum: 18:36 Di 29.10.2013
Autor: h0ffmann

Aufgabe
Seien A [mm] \subseteq [/mm] M und B [mm] \subseteq [/mm] N Mengen. Stellen Sie (M x N) \ (A x B) als Vereinigung geeigneter kartesischer Produkte dar (ein Venn-Diagramm hilft dabei). Beweisen Sie diese Darstellung.


Hey, ich hoffe ich hab meine Frage nicht in die falsche Kategorie gestellt :/

Was ich bisher gemacht habe ist mir das Venn-Diagramm zu zeichen
(Ein großer Kreis der die Menge M darstellt und ein kleiner der darin enthalten ist für die Menge A, großer Kreis für N und ein kleiner der darin ist für B)
und ein weiteres Venn-Diagramm mit einem großen Kreis der die Paare von MxN beinhalten soll und einen kleineren der darin liegt und die Paare von AxB enthalten soll

Wenn ich mir das alle Zusätzlich noch als Koordinatensystem aufzeiche wo ich auf der y-achse N (mit B enthalten) und auf der x-achse M (mit A enthalten) eintrage, komme ich darauf das ich (M\ A)xN [mm] \wedge [/mm] (A\ B)xN darstellen soll.

Ich habe auch schon Probiert mit einem Beispiel weiter zu kommen.
Angenommen:
A={1,3}
B={4,5}
M={1,2,3}
N={4,5,6}
dann wäre MxN={(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)}
und AxB={(1,4),(1,6),(3,4),(3,6)}
also MxN \ AxB ={(1,5),(2,4),(2,5),(2,6),(3,5)}



Meine frage ist jetzt ob meine Annahmen bis hierhin richtig sind...
und was genau eine "Vereinigung geeigneter kartesischer Produkte" ist und wie ich diese dann zum Beispiel darstellen kann
Schonmal vielen Dank im Vorraus
Mfg Hoffmann

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vereinigung kart. Produkte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Di 29.10.2013
Autor: tobit09

Hallo h0ffmann!


> Seien A [mm]\subseteq[/mm] M und B [mm]\subseteq[/mm] N Mengen. Stellen Sie
> (M x N) \ (A x B) als Vereinigung geeigneter kartesischer
> Produkte dar (ein Venn-Diagramm hilft dabei). Beweisen Sie
> diese Darstellung.


> Hey, ich hoffe ich hab meine Frage nicht in die falsche
> Kategorie gestellt :/

Die Kategorie passt absolut!


> Was ich bisher gemacht habe ist mir das Venn-Diagramm zu
> zeichen
> (Ein großer Kreis der die Menge M darstellt und ein
> kleiner der darin enthalten ist für die Menge A, großer
> Kreis für N und ein kleiner der darin ist für B)
> und ein weiteres Venn-Diagramm mit einem großen Kreis der
> die Paare von MxN beinhalten soll und einen kleineren der
> darin liegt und die Paare von AxB enthalten soll

>

> Wenn ich mir das alle Zusätzlich noch als
> Koordinatensystem aufzeiche wo ich auf der y-achse N (mit B
> enthalten) und auf der x-achse M (mit A enthalten)
> eintrage, komme ich darauf das ich (M\ A)xN [mm]\wedge[/mm] (A\ B)xN
> darstellen soll.

Du meinst sicherlich [mm]M\setminus A\times N[/mm] und [mm]A\times (N\setminus B)[/mm].

Da hast du es im Grunde ja schon abgelesen:
Es gilt

(*)    [mm](M\times N)\setminus(A\times B)=((M\setminus A)\times N)\cup((M\times (N\setminus B)))[/mm].

Nun gilt es, dies zu beweisen.


> Ich habe auch schon Probiert mit einem Beispiel weiter zu
> kommen.
> Angenommen:
> A={1,3}
> B={4,5}

[mm]B=\{4,6\}[/mm] meinst du.

> M={1,2,3}
> N={4,5,6}
> dann wäre
> MxN={(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)}
> und AxB={(1,4),(1,6),(3,4),(3,6)}
> also MxN \ AxB ={(1,5),(2,4),(2,5),(2,6),(3,5)}

[ok]


> Meine frage ist jetzt ob meine Annahmen bis hierhin richtig
> sind...
> und was genau eine "Vereinigung geeigneter kartesischer
> Produkte" ist und wie ich diese dann zum Beispiel
> darstellen kann

Eine Darstellung einer Menge [mm]Z[/mm] als Vereinigung zweier kartesischer Produkte ist z.B. eine Darstellung der Form

    [mm]Z=(X_1\times Y_1)\cup (X_2\times Y_2)[/mm]

für gewisse Mengen [mm]X_1,Y_2,X_2,Y_2[/mm].

Obige Gleichung (*) leistet also das Gewünschte, wenn du sie nachgewiesen hast.


Viele Grüße
Tobias

Bezug
                
Bezug
Vereinigung kart. Produkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:50 Di 29.10.2013
Autor: h0ffmann


>  Du meinst sicherlich [mm]M\setminus A\times N[/mm] und [mm]A\times (N\setminus B)[/mm].

Wenn ich drüber nachdenke ist es natürlich richtig was du sagst, aber ich hatte es so notiert wie ich es abgetippt habe, danke!

>  
> Da hast du es im Grunde ja schon abgelesen:
>  Es gilt
>  
> (*)    [mm](M\times N)\setminus(A\times B)=((M\setminus A)\times N)\cup((M\times (N\setminus B)))[/mm].
>  
> Nun gilt es, dies zu beweisen.

Wie könnte mein Beweis hierfür aussehen?
[mm](M\times N)\setminus(A\times B)=((M\setminus A)\times N)\cup((M\times (N\setminus B)))[/mm]
muss ich ja jetzt irgendwie so umformen das auf beiden seiten das selbe steht...
M \ A kann ich ja auch als M [mm] \wedge \neg [/mm] A schreiben (hoffe das stimmt?).

kann ich das Kreuzprodukt auch anders darstellen das ich es umformen kann oder gibt es eine einfacherer möglichkeit wie ich anhand von einem gesetz zu einem gültigem beweis komme(z.b sowas ähnliches wie assoziativgesetz)?
oder sollte ich vllt eine andere beweistechnik benutzen...

>  Eine Darstellung einer Menge [mm]Z[/mm] als Vereinigung zweier
> kartesischer Produkte ist z.B. eine Darstellung der Form
>  
>     [mm]Z=(X_1\times Y_1)\cup (X_2\times Y_2)[/mm]
>  
> für gewisse Mengen [mm]X_1,Y_2,X_2,Y_2[/mm].
>  
> Obige Gleichung (*) leistet also das Gewünschte, wenn du
> sie nachgewiesen hast.

Super vielen dank! Das zu wissen hilft schon sehr beim Verständnis weiter :D

> Viele Grüße
>  Tobias


Bezug
                        
Bezug
Vereinigung kart. Produkte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Di 29.10.2013
Autor: tobit09


> Wie könnte mein Beweis hierfür aussehen?
> [mm](M\times N)\setminus(A\times B)=((M\setminus A)\times N)\cup((M\times (N\setminus B)))[/mm]

>

> muss ich ja jetzt irgendwie so umformen das auf beiden
> seiten das selbe steht...

Ein Beweis mit Umformungen wird nur schwer möglich sein.

> M \ A kann ich ja auch als M [mm]\wedge \neg[/mm] A schreiben
> (hoffe das stimmt?).

Nein, mit [mm]\wedge[/mm] kannst du Aussagen verknüpfen, aber nicht Mengen. Auch [mm]\neg A[/mm] ist nicht erklärt.

Es gilt aber in der Tat

     [mm]x\in M\setminus A\iff x\in M\wedge x\notin A[/mm]

für alle Objekte [mm]x[/mm] nach Definition von [mm]\setminus[/mm].


> kann ich das Kreuzprodukt auch anders darstellen das ich es
> umformen kann oder gibt es eine einfacherer möglichkeit
> wie ich anhand von einem gesetz zu einem gültigem beweis
> komme(z.b sowas ähnliches wie assoziativgesetz)?
> oder sollte ich vllt eine andere beweistechnik
> benutzen...

Letzteres.

Zeige nacheinander [mm](M\times N)\setminus(A\times B)\subseteq((M\setminus A)\times N)\cup((M\times (N\setminus B)))[/mm] und [mm](M\times N)\setminus(A\times B)\supseteq((M\setminus A)\times N)\cup((M\times (N\setminus B)))[/mm].

Etwa Ersteres:

Sei [mm]z\in(M\times N)\setminus(A\times B)[/mm].
Zu zeigen ist [mm]z\in((M\setminus A)\times N)\cup((M\times (N\setminus B)))[/mm].

Wegen [mm]z\in (M\times N)\setminus(A\times B)[/mm] gilt [mm]z\in M\times N[/mm] und [mm]z\notin A\times B[/mm].

Wegen [mm]z\in M\times N[/mm] existieren [mm]x\in M[/mm] und [mm]y\in N[/mm] mit [mm]z=(x,y)[/mm].

Wegen [mm](x,y)=z\notin A\times B[/mm] gilt [mm]x\notin A[/mm] oder [mm]y\notin B[/mm].

Betrachte nun die Fälle [mm]x\notin A[/mm] und [mm]y\notin B[/mm] separat und zeige jeweils [mm]z=(x,y)\in((M\setminus A)\times N)\cup((M\times (N\setminus B)))[/mm].

Bezug
                                
Bezug
Vereinigung kart. Produkte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Mo 23.10.2017
Autor: Tobikall


Bezug
                                
Bezug
Vereinigung kart. Produkte: Bedankt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Di 29.10.2013
Autor: h0ffmann

Vielen vielen dank für deine Unterstützung :)
Finde diese Seite einfach nur gigantisch!
Sobald ich selbst weiter bin und mehr den durchblick habe werde ich auch versuchen anderen zu helfen wo ich kann!
Mach weiter so
Ganz liebe grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]