www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Vereinfachung einer Rechnung
Vereinfachung einer Rechnung < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachung einer Rechnung: Skalar und Kreuzprodukt
Status: (Frage) beantwortet Status 
Datum: 16:27 Mo 07.04.2008
Autor: mariluz

Aufgabe
Wir sollen die nächste Rechnung vereinfachen

[mm] (\vec{m}*\vec{r})\vec{v}+(\vec{v}*\vec{r})\vec{m}+(\vec{m}*\vec{v})\vec{r} [/mm]

        
Bezug
Vereinfachung einer Rechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Mo 07.04.2008
Autor: M.Rex

Hallo

Ist dein * das Kreuz- oder das Skalarprodukt? Ich vermute mal, das Kreuzprodukt. Zur Unterscheidung nehme ich jetzt man [mm] \times [/mm] fürs Kreuz und [mm] \* [/mm] fürs Skalarpr.

Am besten geht es, wenn du direkt ausrechnest.

Also:
[mm] (\vec{m}\cdot{}\vec{r})*\vec{v}+(\vec{v}\cdot{}\vec{r})*\vec{m}+(\vec{m}\cdot{}\vec{v})*\vec{r} [/mm]
[mm] =\left(\vektor{m_{1}\\m_{2}\\m_{3}}\times\vektor{r_{1}\\r_{2}\\r_{3}}\right)\*\vektor{v_{1}\\v_{2}\\v_{3}}+\left(\vektor{v_{1}\\v_{2}\\v_{3}}\times\vektor{r_{1}\\r_{2}\\r_{3}}\right)\*\vektor{m_{1}\\m_{2}\\m_{3}}+\left(\vektor{m_{1}\\m_{2}\\m_{3}}\times\vektor{v_{1}\\v_{2}\\v_{3}}\right)\*\vektor{r_{1}\\r_{2}\\r_{3}} [/mm]
[mm] =\vektor{m_{2}r_{3}-m_{3}r_{2}\\m_{3}r_{1}-m_{1}r_{3}\\m_{1}r_{2}-m_{2}r_{1}}\*\vektor{v_{1}\\v_{2}\\v_{3}}+\vektor{v_{2}r_{3}-v_{3}r_{2}\\v_{3}r_{1}-v_{1}r_{3}\\v_{1}r_{2}-v_{2}r_{1}}\*\vektor{m_{1}\\m_{2}\\m_{3}}+\vektor{m_{2}v_{3}-m_{3}v_{2}\\m_{3}v_{1}-m_{1}v_{3}\\m_{1}v_{2}-m_{2}v_{1}}\*\vektor{r_{1}\\r_{2}\\r_{3}} [/mm]
[mm] =\vektor{v_{1}(m_{2}r_{3}-m_{3}r_{2})\\v_{2}(m_{3}r_{1}-m_{1}r_{3})\\v_{3}(m_{1}r_{2}-m_{2}r_{1})}+\vektor{m_{1}(v_{2}r_{3}-v_{3}r_{2})\\m_{2}(v_{3}r_{1}-v_{1}r_{3})\\m_{3}(v_{1}r_{2}-v_{2}r_{1})}+\vektor{r_{1}(m_{2}v_{3}-m_{3}v_{2})\\r_{2}(m_{3}v_{1}-m_{1}v_{3})\\r_{3}(m_{1}v_{2}-m_{2}v_{1})} [/mm]
[mm] =\vektor{v_{1}(m_{2}r_{3}-m_{3}r_{2})+m_{1}(v_{2}r_{3}-v_{3}r_{2})+r_{1}(m_{2}v_{3}-m_{3}v_{2})\\v_{2}(m_{3}r_{1}-m_{1}r_{3})+m_{2}(v_{3}r_{1}-v_{1}r_{3})+r_{2}(m_{3}v_{1}-m_{1}v_{3})\\v_{3}(m_{1}r_{2}-m_{2}r_{1})+m_{3}(v_{1}r_{2}-v_{2}r_{1})+r_{3}(m_{1}v_{2}-m_{2}v_{1})} [/mm]



Jetzt versuch mal weiter. Am Ende klammere mal weitestgehend aus.

Marius


Bezug
                
Bezug
Vereinfachung einer Rechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 07.04.2008
Autor: mariluz

Hi Marius!

danke sehr aber es ist alles ein Skalarprodukt, es gibt kein Kreuzprodukt. Wir suchen eine kürzere Ausdruck

kannst du uns weiter helfen?

Viele Grüsse,

Mariluz

Bezug
                        
Bezug
Vereinfachung einer Rechnung: Ausrechnen
Status: (Antwort) fertig Status 
Datum: 18:01 Mo 07.04.2008
Autor: M.Rex

Hallo

Dann rechnet halt das aus.

[mm] =\left(\vektor{m_{1}\\m_{2}\\m_{3}}\*\vektor{r_{1}\\r_{2}\\r_{3}}\right)*\vektor{v_{1}\\v_{2}\\v_{3}}+\left(\vektor{v_{1}\\v_{2}\\v_{3}}\*\vektor{r_{1}\\r_{2}\\r_{3}}\right)*\vektor{m_{1}\\m_{2}\\m_{3}}+\left(\vektor{m_{1}\\m_{2}\\m_{3}}\*\vektor{v_{1}\\v_{2}\\v_{3}}\right)*\vektor{r_{1}\\r_{2}\\r_{3}} [/mm]
[mm] =(m_{1}r_{1}+m_{2}r_{2}+m_{3}r_{3})*\vektor{v_{1}\\v_{2}\\v_{3}}+(v_{1}r_{1}+v_{2}r_{2}+v_{3}r_{3})*\vektor{m_{1}\\m_{2}\\m_{3}}+(m_{1}v_{1}+m_{2}v_{2}+m_{3}v_{3})*\vektor{r_{1}\\r_{2}\\r_{3}} [/mm]
[mm] =\vektor{(m_{1}r_{1}+m_{2}r_{2}+m_{3}r_{3})v_{1}\\(m_{1}r_{1}+m_{2}r_{2}+m_{3}r_{3})v_{2}\\(m_{1}r_{1}+m_{2}r_{2}+m_{3}r_{3})v_{3}}+..... [/mm]
=...

Somit bekommt ihr am Ende einen Vektor, den man evtl mit Hilfe des Skalarproduktes noch vereinfachen kann. Dazu wendet mal die Definition des Skalarproduktes "Rückwärts" an, also
[mm] \vektor{x\\y\\z}*\vektor{u\\v\\w}=xu+yv+zw. [/mm]

Versucht mal, im entstehenden Vektor dazu passend auszuklamern.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]