www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Vereinfachung char. Polynom
Vereinfachung char. Polynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachung char. Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Sa 15.03.2008
Autor: Cabby

Aufgabe
Gegeben sei die Matrix

A = [mm] \pmat{- 11 & 18 & -6 \\ -6 & 10 & -3 \\ 0 & 0 & 1 } \in M(3,\IC) [/mm]

Zeigen Sie, Ist  [mm] \lambda \in \IC [/mm] ein Eigenwert von A, so gilt [mm] \lambda^2 [/mm] + [mm] \lambda [/mm] -2 = 0

Hallo liebes Forum. Ich bin grad kräftig am Büffeln für eine Klausur und die Aufgabe verstehe ich nicht.

Ich habe das charakteristische Polynom berechnet und komme auf  
$(1 - [mm] t)*(t^2 [/mm] + t - 2) = - [mm] t^3 [/mm] + 3t - 2$

Das [mm] t^2 [/mm] + t -2 ist schon mal gut und so stehts ja auch in der Aufgabe. Dieses Polynom ergibt die Lösungen t=-2 und t=1. t=1 ist ja im Faktor (1-t) schon mitdrin, deswegen kann man den weglassen.
Der Nachweis, der in der Lektüre steht, die ich gerade studiere, schlägt folgendes vor:

p [mm] \in \IC[/mm]  [t] Polynom mit p(A) = 0. Sei [mm] \lambda \in \IC [/mm] Eigenwert von A, v der dazugehörige Eigenvektor

[mm] P(\lambda)*v [/mm] = P(A)(v) = 0 [mm] \Rightarrow P(\lambda) [/mm] = 0, da v [mm] \not=0 [/mm]
[mm] \Rightarrow \lambda^2 [/mm] + [mm] \lambda [/mm] - 2 = 0 [mm] \Box [/mm]

Ich verstehe den Beweis nicht. Wie kann man damit auf die Gleichung [mm] \lambda^2 [/mm] + [mm] \lambda [/mm] - 2 = 0  schließen? Und was sagt [mm] P(\lambda)*v [/mm] = P(A) (v)

Das verstehe ich alles hinten und vorne nicht.
Wäre lieb würde mir das mal jemand Schritt für Schritt erklären.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vereinfachung char. Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Sa 15.03.2008
Autor: angela.h.b.


> Gegeben sei die Matrix
>  
> A = [mm]\pmat{- 11 & 18 & -6 \\ -6 & 10 & -3 \\ 0 & 0 & 1 } \in M(3,\IC)[/mm]

Hallo,

[willkommenmr].

Deine Lösung funktioniert ja so:

Du berechnest die Eigenwerte der Matrix A, erhältst -2, 1, 1, bist Dir aus gewissen Gründen sicher, daß es keine weiteren Eigenwerte gibt und kannst direkt vorrechnen, daß [mm] (-2)^2+(-2)-2=0 [/mm] und [mm] 1^2 [/mm] +1 -2=0 richtig ist.

So würde ich das wohl auch machen.

Die Lösung Deines Buches geht so:

Sie setzen in [mm] P(x)=x^2+x+2 [/mm] die Matrix A ein und rechnen nach, daß [mm] P(A)=A^2+A-2E=Nullmatrix [/mm] richtig ist.

Nun geht's so weiter: sei v ein Eigenvektor zum EW [mm] \lambda. [/mm]

Es ist

Nullvektor= [mm] Nullmatrix*v=P(A)*v=(A^2+A-2E)v=A^2v+Av-2=\lambda^2 v+\lambda [/mm] v [mm] -2v=(\lambda^2 +\lambda-2)v [/mm]

Da [mm] v\not=0 [/mm] (Eigenvektor!) folgt [mm] \lambda^2 +\lambda-2=0. [/mm]

Gruß v. Angela



Bezug
                
Bezug
Vereinfachung char. Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:01 Sa 15.03.2008
Autor: Cabby

Da wurden dann aber ganz viele Schritte weggelassen :(

Vielen Dank für die total schnelle Antwort. Ist hier ja ein super Forum :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]