www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Verallgemeinertr Binomialkoef.
Verallgemeinertr Binomialkoef. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verallgemeinertr Binomialkoef.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Di 29.08.2006
Autor: pusteblume86

Hallöchen ihr...Mal wieder die Vorbereitung für meine Zwischenprüfung;)

Ich hoffe ihr könnt mir helfen.

Wir haben in der Vorlesung, den verallgemeinerten Binomiallehrsatz definiert. dieser lautete wie folgt:

[mm] (x+1)^a [/mm] = [mm] \summe_{j=0}^{infty} {a\choose j} *x^j [/mm]

Nun hatten wir einen weiteren Sat, dass für a [mm] \in [/mm] )-1,0(  und x=1, diese reihe divergiert... Wenn ich aber nun dies mal ausschreibe, steht da: [mm] (1+1)^a [/mm] = [mm] \summe_{j=0}^{infty} {a\choose j} *1^j [/mm]
So, wenn man nun z.b a= -0,5 nimmt, sthet da:  [mm] \summe_{j=0}^{infty} {-0,5\choose j} *1^j [/mm] = [mm] 2^j [/mm]

dann haben wir noch gelernt, das [mm] {a\choose j} [/mm] = 0 für j [mm] \ge [/mm] a+1

Die Reihe lautet ja ausgeschrieben: [mm] {-0,5\choose 0}*1^0 [/mm] + [mm] {-0,5\choose 1}*1 [/mm] + [mm] {-0,5\choose 2}*1 [/mm] +........Ab da wird es also alles 0, nicht wahr?(wegen grüngedrucktem)

Es bleiben also nur die ersten beiden Terme. Beim ersten bin ich mir nicht sicher, ob es nicht einfach auch 0 ist, oder 1?,  der 2. term ist - 0,5. Damit wäre doch diese Reihe konvergent oder nicht?

Ich hoffe ihr blickt durch meine Frage durch und könnt mir helfen..
Dankeeeee schööön im Vorraus!

Liebe Grüße von der verzweifelten Sandra

        
Bezug
Verallgemeinertr Binomialkoef.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Do 31.08.2006
Autor: pusteblume86

Hey ihr. Hat den keiner ne Idee?=)Ich wäre echt um jeden kleinsten aber feinsten Tip dankbar...

Schönen Abend euch allen!

Bezug
        
Bezug
Verallgemeinertr Binomialkoef.: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 Fr 01.09.2006
Autor: leduart

Hallo Pusteblume

> [mm](x+1)^a[/mm] = [mm]\summe_{j=0}^{infty} {a\choose j} *x^j[/mm]
>  
> Nun hatten wir einen weiteren Sat, dass für a [mm]\in[/mm] )-1,0(  
> und x=1, diese reihe divergiert... Wenn ich aber nun dies
> mal ausschreibe, steht da: [mm](1+1)^a[/mm] = [mm]\summe_{j=0}^{infty} {a\choose j} *1^j[/mm]
> So, wenn man nun z.b a= -0,5 nimmt, sthet da:  
> [mm]\summe_{j=0}^{infty} {-0,5\choose j} *1^j[/mm] = [mm]2^j[/mm]
>  
> dann haben wir noch gelernt, das [mm]{a\choose j}[/mm] = 0 für j [mm]\ge[/mm]
> a+1

Das ist für die verallgemeinerten Binomialkoeffizienten einfach falsch!

[mm] \vektor{r\\ k}=\bruch{r*(r-1)*....*(r-k+1)}{k!} [/mm] z.Bsp [mm] \vektor{-2 \\ 3}=-4 [/mm]

Gruss leduart

Bezug
                
Bezug
Verallgemeinertr Binomialkoef.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:58 Fr 01.09.2006
Autor: pusteblume86

Hey supi ...danke..auch wenn ich nun doch etwas sauer bin, dass wie son scheiß in Ana 2 lernen...jetzt weiß ich wenigestens das diese Aussage , so wie sie im Script steht einfach nicht stimmen kann. Vielen Dank..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]