www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maß- und Integrationstheorie" - Verallgem. Cauchy-Schwarz?
Verallgem. Cauchy-Schwarz? < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maß- und Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verallgem. Cauchy-Schwarz?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:08 Do 06.11.2014
Autor: steppenhahn

Aufgabe
Es seien $X,Y$ Zufallsvariablen mit $E[X] = E[Y] = 0$ und [mm] $\|X\|_p [/mm] := [mm] \Big(E[X^p]\Big)^{1/p}$. [/mm] Gilt

[mm] $\|XY [/mm] - [mm] E[XY]\|_p \le C\cdot \|X^2 [/mm] - [mm] E[X^2]\|_p^{1/2}\cdot \|Y^2 [/mm] - [mm] E[Y^2]\|_p^{1/2}$ [/mm]

mit einer von $X,Y$ unabhängigen Konstante $C$?

Hallo!

Für eine Abschätzung bräuchte ich eine Ungleichung der obigen Form. Weiß jemand von euch, ob so etwas gilt?

Ich habe es im Fall $p = 2$ mit $(X,Y)$ gemeinsam normalverteilt durchgerechnet und da funktioniert es.

Es ist ja immerhin so, dass [mm] $N_p(X) [/mm] := [mm] \|X [/mm] - [mm] E[X]\|_p$ [/mm] wieder eine Norm ist. Mit dieser Definition würde die obige Ungleichung

[mm] $N_p(XY) \le N_p(X^2)^{1/2}\cdot N_p(Y^2)^{1/2}$ [/mm]

lauten, d.h. so eine Art verallgemeinerte Cauchy-Schwarz-Ungleichung. Das Problem ist eben nur, dass ich meine Norm (linke Seite) nicht durch ein Skalarprodukt erzeugen kann.

Viele Grüße,
Stefan

        
Bezug
Verallgem. Cauchy-Schwarz?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 08.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maß- und Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]