www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum über Z/pZ
Vektorraum über Z/pZ < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum über Z/pZ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Di 30.11.2010
Autor: void.

Aufgabe
Sei V ein Vektorraum über F = Z/pZ, p prim, der Dimension [mm] dim_F [/mm] V = n.
Wieviele Vektoren gibt es in V ?

Hallo,

ich bin zu der Aufgabe etwas überfragt.
Bisher hab ich eigtl nur,

dass #V := Anzahl der Vektoren..... #V [mm] \ge [/mm] n

Da Basen in jedem Fall in dem VR liegen.

Bei n=1 existiert dann nur eine Basis, aber p verschiedene Elemente aus Z/pZ mit denen der eine Vektor mult. werden kann, also #V = p ?

bei n=2 hab ich 2 vekt auf die ich alle äq klassen von Z/pZ dran mult. kann.

also wären dann in diesem Fall alle Permutationen = [mm] p^2 [/mm] = #V ?
(passt zumindest für p=3 und p=2)

das sieht dann ziemlich stark nach [mm] p^n [/mm] aus, wobei das sogar für dim = 0 passt mit einem Vektor.


bin ich zumindest am richtigen weg?

Gruß

        
Bezug
Vektorraum über Z/pZ: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Di 30.11.2010
Autor: leduart

Hallo
du hast Recht. ich würd das mit induktion zeigen. wenn es für n richtig ist, dann für einen n-dimunterraum des n+1 dimensionalen.
oder du nimmst dir ne Basis, [mm] b_i [/mm] und alle Vektoren kannst du mit [mm]\summe_{i=1}^{n} z_i*b_i[/mm] bestimmen. jedes [mm] z_i [/mm] kann p Werte annehmen. also auch insgesamt [mm] p^n [/mm] verschieden [mm] z_i. [/mm]
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]