Vektorraum über Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:09 Mi 26.10.2011 | Autor: | Klempner |
Aufgabe | Sei V ein Vektorraum über einem Körper K. Zeigen Sie, dass GL(V) transitiv auf [mm] V\{0} [/mm] operiert. |
Hallo!
Ich habe ein Problem. Ich habe bisher noch nie was über Körper gehört und Analysis muss ich nach Studienordnung gar nicht machen, habe also wirklich keine Ahnung. Leider wird dies aber in einem anderen Seminar als Vorraussetzung verlangt. Demnach komme ich nicht weiter und brauche dringend eure Hilfe.
Hier erstmal, was ich weiß:
- GL(V) bedeutet Gruppe aller invertierbarer Matrizen
- transitiv bedeutet, dass man aus a [mm] \Rightarrow [/mm] b [mm] \Rightarrow [/mm] c auch sagen kann a [mm] \Rightarrow [/mm] c
Ich habe mir jetzt gedacht, dass ich ja von einer beliebigen invertierbaren MAtrix ausgehen muss. Diese Matrix muss, soweit ich weiß, linear unanhängig sein. Da bei linearer Unabhängigkeit alle Richtungsvektoren nicht 0 werden dürfen, wäre die 0 ja schon gar nicht dabei. DAmit habe ich ja praktisch schon ausgeschlossen, dass die 0 dabei ist. Gezeigt habe ich aber so noch gar nichts...
Stimmen meine Überlegungen? Abgesehen davon habe ich die Transitivität auch nicht genutzt. Demnach gehe ich davon aus, dass das alles Quatsch ist, was ich mir gedacht habe.
Vielleicht kann mir ja einer von euch helfen.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:53 Mi 26.10.2011 | Autor: | cycore |
Hallo Klempner,
ich möchte mal versuchen dir diese Begriffe zu erklären.
> Sei V ein Vektorraum über einem Körper K. Zeigen Sie,
> dass GL(V) transitiv auf [mm]V\{0}[/mm] operiert.
> Hallo!
> Ich habe ein Problem. Ich habe bisher noch nie was über
> Körper gehört und Analysis muss ich nach Studienordnung
> gar nicht machen, habe also wirklich keine Ahnung. Leider
> wird dies aber in einem anderen Seminar als Vorraussetzung
> verlangt. Demnach komme ich nicht weiter und brauche
> dringend eure Hilfe.
Körper haben so gesehen nichts mit Analysis zu tun. Ein Körper ist nichts anderes als eine Menge mit zwei Verknüpfungen (Addition und Multiplikation), die gewisse Eigenschaften haben, schau doch mal hier - wichtiger ist aber: denke bei K einfach an [mm]\IR[/mm], die reellen Zahlen.
Der Körper ist hier aber dein kleinstes Problem, denke ich.
>
> Hier erstmal, was ich weiß:
> - GL(V) bedeutet Gruppe aller invertierbarer Matrizen
Nicht ganz (beziehungsweise kommt darauf an). Wenn ihr nur endlichdimensionale Vektorräume betrachtet kannst du anstatt in [mm]GL(V) := \{f\colon{V}\to{V} \textrm{ linear und bijektiv}\}[/mm] auch einfach in [mm]GL_n(K) := \{A\in{}K^{n\times{n}} \textrm{ invertierbar}\}[/mm] rechnen. Egal ob du dich jetzt auf endlichdimensionale Vektorräume beschränken darfst oder nicht - rechne das (siehe folgendes) besser zunächst mal mit Matrizen nach.
> - transitiv bedeutet, dass man aus a [mm]\Rightarrow[/mm] b
> [mm]\Rightarrow[/mm] c auch sagen kann a [mm]\Rightarrow[/mm] c
Du berichtest hier von der Transitivität einer Relation. Es geht aber um diejenige einer Gruppenwirkung:
Es sei [mm](G, \circ{})[/mm] (in unserem Fall [mm]G=GL(V)[/mm] mit der Komposition oder bei Matrizen Multiplikation) eine Gruppe. Eine (Links-)Gruppenoperation von G auf der Menge X (hier [mm]=V\setminus{0}[/mm]) ist eine Abbildung [mm]G\times{X}\to{X}[/mm], [mm]G\times{X}\to{X}\;(g,x)\mapsto{g\cdot{x}}[/mm] so, dass zum einen für alle [mm]x\in{X}[/mm] gilt [mm]e\cdot{x}=x[/mm] und zum anderen wieder für alle [mm]x\in{X} \textrm{ und } g,h\in{G}[/mm] gilt [mm](g\circ{h})\cdot{x} = g\cdot{(h\cdot{x})}[/mm].
Dann heißt eine solche Operation transitiv, wenn es für beliebige [mm]x,y\in{X}[/mm] ein [mm]g\in{G}[/mm] gibt so, dass [mm]g\cdot{x}=y[/mm].
In unserem Fall ist die Wirkung einfach [mm]f\cdot{v} := f(v) \textrm{ für } f\in{GL(V)},\;v\in{V\setminus{0}}[/mm], also Auswertung.
Langer Rede kurzer Sinn; Du musst in der Aufgabe zeigen, dass es für zwei Vektoren [mm]v,w\in{V\setminus{0}}[/mm] einen Isomorphismus [mm]f\in{GL(V)}[/mm] gibt so, dass [mm]f(v)=w[/mm] gilt.
Wie gesagt - am besten machst du das mal mit (reellen) Matrizen. Dort gilt es natürlich zu zwei Vektoren [mm]v,w\in{\IR^n\setminus{0}}[/mm] eine invertierbare Matrix [mm]A\textrm{ mit } A\cdot{v} = w[/mm] zu finden.
> Ich habe mir jetzt gedacht, dass ich ja von einer
> beliebigen invertierbaren MAtrix ausgehen muss. Diese
> Matrix muss, soweit ich weiß, linear unanhängig sein. Da
> bei linearer Unabhängigkeit alle Richtungsvektoren nicht 0
> werden dürfen, wäre die 0 ja schon gar nicht dabei. DAmit
> habe ich ja praktisch schon ausgeschlossen, dass die 0
> dabei ist. Gezeigt habe ich aber so noch gar nichts...
>
> Stimmen meine Überlegungen? Abgesehen davon habe ich die
> Transitivität auch nicht genutzt. Demnach gehe ich davon
> aus, dass das alles Quatsch ist, was ich mir gedacht habe.
>
> Vielleicht kann mir ja einer von euch helfen.
Ich hoffe das konnte ich. Gruß cycore
|
|
|
|