Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:33 Mo 14.11.2005 | Autor: | Franzie |
Hallöchen!
Hab mal ne frage zu folgender aufgabe:
im folgenden werden jeweils einige vektoren des vektorraums [mm] \IR^{3} [/mm] gegeben. überlegen sie, ob es vektoren von [mm] \IR^{3} [/mm] gibt, die nicht in dem von diesen vektoren aufgespannten untervektorraum liegen. wenn ja, dann geben sie weitere vektoren an, die nötig sind, um den gesamten vektorraum [mm] \IR^{3} [/mm] aufzuspannen.
a) (1,1,1),(0,1,0)
b) (3,4,7) , (6,8,14) , (-12,-16,-28)
c) (1/10000,0,0) , (0,1/10000,0) , (0,0,1/10000)
hab jetzt erstmal festgestellt, dass die vektoren in b) linear abhängig sind. damit fehlen ja dann noch vektoren, um [mm] \IR^{3} [/mm] aufzuspannen. bloß wie finde ich die?
c) ist linear unabhängig und stellt meiner meinung nach eine basis dar, also müsste damit schon [mm] \IR^{3} [/mm] aufgespannt sein.
a) ist auch linear unabhängig, aber ich bin mir nicht sicher, ob dadurch schon der komplette vektorraum [mm] \IR^{3} [/mm] aufgespannt wird.
liebe grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:17 Mo 14.11.2005 | Autor: | BennoO. |
hi franzie.
also die aufgabe c) stimmt völlig. die drei vektoren sind lin. unabhängig und bilden somit eien basis des [mm] R^3. [/mm]
zu b): auch hier hast du recht. die drei vektoren sind zueinander linear abhängig. da du ja eine basis für den [mm] R^3 [/mm] finden sollst, brauchst du nun zwei weitere lin. unabhängige vektoren.
ein beispiel für zwei lin. unabhängige vektoren, sind die einheitsvektoren im [mm] R^3. [/mm] bilde also wie folgt eine lin. kombination: [mm] \lambda* \vektor{3 \\ 4 \\ 7}+ \mu* \vektor{0 \\ 1 \\ 0}+ \nu* \vektor{0 \\ 0 \\ 1}= \vektor{0 \\ 0 \\ 0}, [/mm] und löse das system. die vektoren sind alle zueinander lin. unabhängig. natürlich könntest du hier auch "viele andere" vektoren zur "ergänzung" finden, aber die einheitsvektoren sind meist immer die einfachste wahl.
und naja, a) funktioniert dann im prinzip analog.
die beiden vektoren, die du angegeben hast, sind zwar lin. unabhängig, aber keine basis für den [mm] R^3. [/mm] dafür brauchst du noch einen dritten vektor, der zu den geg, beiden vektoren, lin.unabhängig ist. hier kannst du z.b den "dritten" einheitsvektor nehmen, also [mm] \vektor{0 \\ 0 \\ 1}. [/mm]
das ist natürlich auch wieder nur "eine möglichkeit". wenn du's formell korrekt machen möchtest, dann musst du ganz allgemein ein homogenes LGS der form Ax=0 lösen, dass wie folgt aussähe:
[mm] \lambda* \vektor{1 \\ 1 \\ 1}+ \mu* \vektor{0 \\ 1 \\ 0}+ \nu* \vektor{a \\ b \\ c}= \vektor{0 \\ 0 \\ 0}, [/mm] mit a,b,c aus R.
ich hoffe ich konnte dir weiterhelfen.
viele grüße benno
|
|
|
|