www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorraum
Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mo 14.11.2005
Autor: Franzie

Hallöchen!
Hab mal ne frage zu folgender aufgabe:

im folgenden werden jeweils einige vektoren des vektorraums  [mm] \IR^{3} [/mm] gegeben. überlegen sie, ob es vektoren von  [mm] \IR^{3} [/mm] gibt, die nicht in dem von diesen vektoren aufgespannten untervektorraum liegen. wenn ja, dann geben sie weitere vektoren an, die nötig sind, um den gesamten vektorraum  [mm] \IR^{3} [/mm] aufzuspannen.
a) (1,1,1),(0,1,0)
b) (3,4,7) , (6,8,14) , (-12,-16,-28)
c) (1/10000,0,0) , (0,1/10000,0) , (0,0,1/10000)

hab jetzt erstmal festgestellt, dass die vektoren in b) linear abhängig sind. damit fehlen ja dann noch vektoren, um  [mm] \IR^{3} [/mm] aufzuspannen. bloß wie finde ich die?
c) ist linear unabhängig und stellt meiner meinung nach eine basis dar, also müsste damit schon  [mm] \IR^{3} [/mm] aufgespannt sein.
a) ist auch linear unabhängig, aber ich bin mir nicht sicher, ob dadurch schon der komplette vektorraum  [mm] \IR^{3} [/mm] aufgespannt wird.
liebe grüße

        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Mo 14.11.2005
Autor: BennoO.

hi franzie.
also die aufgabe c) stimmt völlig. die drei vektoren sind lin. unabhängig und bilden somit eien basis des [mm] R^3. [/mm]
zu b): auch hier hast du recht. die drei vektoren sind zueinander linear abhängig. da du ja eine basis für den [mm] R^3 [/mm] finden sollst, brauchst du nun zwei weitere lin. unabhängige vektoren.
ein beispiel für zwei lin. unabhängige vektoren, sind die einheitsvektoren im [mm] R^3. [/mm] bilde also wie folgt eine lin. kombination: [mm] \lambda* \vektor{3 \\ 4 \\ 7}+ \mu* \vektor{0 \\ 1 \\ 0}+ \nu* \vektor{0 \\ 0 \\ 1}= \vektor{0 \\ 0 \\ 0}, [/mm] und löse das system. die vektoren sind alle zueinander lin. unabhängig. natürlich könntest du hier auch "viele andere" vektoren zur "ergänzung" finden, aber die einheitsvektoren sind meist immer die einfachste wahl.
und naja, a) funktioniert dann im prinzip analog.
die beiden vektoren, die du angegeben hast, sind zwar lin. unabhängig, aber keine basis für den [mm] R^3. [/mm] dafür brauchst du noch einen dritten vektor, der zu den geg, beiden vektoren, lin.unabhängig ist.  hier kannst du z.b den "dritten" einheitsvektor nehmen, also  [mm] \vektor{0 \\ 0 \\ 1}. [/mm]
das ist natürlich  auch wieder nur "eine möglichkeit". wenn du's formell korrekt machen möchtest, dann musst du ganz allgemein ein homogenes LGS der form Ax=0 lösen, dass wie folgt aussähe:
[mm] \lambda* \vektor{1 \\ 1 \\ 1}+ \mu* \vektor{0 \\ 1 \\ 0}+ \nu* \vektor{a \\ b \\ c}= \vektor{0 \\ 0 \\ 0}, [/mm] mit a,b,c aus R.
ich hoffe ich konnte dir weiterhelfen.
viele grüße benno



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]