www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorräume
Vektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume: Übungsaufgabe1
Status: (Frage) beantwortet Status 
Datum: 12:07 Mi 19.11.2008
Autor: sethonator

Aufgabe
Seien U1, U2 zwei Untervektorräume von V . Zeigen Sie:

Der Schnitt U1 [mm] \cap [/mm] U2 ist ein Untervektorraum von V.



Muss man das in Formeln packen?

Ich mein, man geht doch davon aus, dass [mm] U1\subseteq [/mm] V ist und das U2 [mm] \subseteq [/mm] von V ist.

Dann ist doch auch die Schnittmenge aus V.

Oder geht das auch kompliziert in einer Formel?

Danke schön!!!!

        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Mi 19.11.2008
Autor: angela.h.b.


> Seien U1, U2 zwei Untervektorräume von V . Zeigen Sie:
>  
> Der Schnitt U1 [mm]\cap[/mm] U2 ist ein Untervektorraum von V.
>  
>
>
> Muss man das in Formeln packen?
>  
> Ich mein, man geht doch davon aus, dass [mm]U1\subseteq[/mm] V ist
> und das U2 [mm]\subseteq[/mm] von V ist.
>  
> Dann ist doch auch die Schnittmenge aus V.

Hallo,

daß die Schnittmenge eine Teilmenge von V ist, ist hier wahrlich nicht so atemberaubend, das hast Du richtig erkannt.

Nicht erkannt hast Du allerdings, was in dieser Aufgabe zu zeigen ist: hier geht es nicht um die Teilmengenbeziehung, sondern darum, daß der Schnitt ein Untervektorraum ist. Und diese Aussage ist um Klassen aufregender. (Für die Vereinigung gilt sie nämlich i.d.R. nicht.)

Was zu tun ist:

Kläre, was ein Untervektorraum ist.
Mach Dir klar, was hierfür zu zeigen ist. (Stichwort: Unterraumkriterien)
Tu's.

Gruß v. Angela




Bezug
                
Bezug
Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Do 20.11.2008
Autor: sethonator

Okay, das heißt dann doch folgendes:

Ich muss die 3 Unterraumkriterien erfüllen:

1. 0 [mm] \in [/mm] U bzw. U [mm] \not= \emptyset [/mm]
2. wenn x, y $ [mm] \in [/mm] $ U, dann muss x + y  $ [mm] \in [/mm] $ U sein.
3. $ [mm] \lambda \in [/mm] $ K; x $ [mm] \in [/mm] $ U, dann muss $ [mm] \lambda [/mm] $ * x auch $ [mm] \in [/mm] $ U sein.

So,
jetzt das Ganze mal auf unsere Aufgabe projeziert.

Ich muss doch sagen:

1. (0∈U ∧ 0∈V) => 0∈ [mm] U_{1} \cap U_{2} [/mm]
2. Wenn x,y [mm] \in U_{1} \cap U_{2} \Rightarrow [/mm] x,y [mm] \in U_{1} \wedge [/mm] x,y [mm] \in U_{2} [/mm]
[mm] U_{1} [/mm] und [mm] U_{2} [/mm] sind beides Untervektorräume von V.
Das heißt dass x+y [mm] \in U_{1} \wedge [/mm] x+y [mm] \in U_{2} [/mm]

Und wie gehts hier weiter?

3. Wenn x [mm] \in U_{1} \cap U_{2} [/mm] dann muss auch [mm] \lambda [/mm] * x in [mm] U_{1} \cap U_{2} [/mm] sein.

Wie überprüfe ich das?

Bezug
                        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Do 20.11.2008
Autor: leduart

Hallo
Das geht entsprechend wie in 2
Gruss leduart

Bezug
                                
Bezug
Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Do 20.11.2008
Autor: sethonator

War denn 2. soweit richtig und vollständig?

LG

Bezug
                                        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Do 20.11.2008
Autor: leduart

Hallo
Ja , ist richtig, es fehlt vielleicht der Schlusssatz und deshalb auch x+y in U1 [mm] \cap [/mm] U2.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]